LAPACK Singular Value and Eigenvalue Problem Routines

LAPACK Singular Value and Eigenvalue Problem Routines#

LAPACK Singular Value and Eigenvalue Problem routines are used for singular value and eigenvalue problems, and for performing a number of related computational tasks. The following table lists the LAPACK Singular Value and Eigenvalue Problem routine groups.

Routines

Scratchpad Size Routines

Description

gebrd

gebrd_scratchpad_size

Reduces a general matrix to bidiagonal form.

gesvd

gesvd_scratchpad_size

Computes the singular value decomposition of a general rectangular matrix.

heevd

heevd_scratchpad_size

Computes all eigenvalues and, optionally, all eigenvectors of a complex Hermitian matrix using divide and conquer algorithm.

hegvd

hegvd_scratchpad_size

Computes all eigenvalues and, optionally, all eigenvectors of a complex generalized Hermitian definite eigenproblem using divide and conquer algorithm.

hetrd

hetrd_scratchpad_size

Reduces a complex Hermitian matrix to tridiagonal form.

orgbr

orgbr_scratchpad_size

Generates the real orthogonal matrix \(Q\) or \(P^T\) determined by gebrd.

orgtr

orgtr_scratchpad_size

Generates the real orthogonal matrix \(Q\) determined by sytrd.

ormtr

ormtr_scratchpad_size

Multiplies a real matrix by the orthogonal matrix \(Q\) determined by sytrd.

syevd

syevd_scratchpad_size

Computes all eigenvalues and, optionally, all eigenvectors of a real symmetric matrix using divide and conquer algorithm.

sygvd

sygvd_scratchpad_size

Computes all eigenvalues and, optionally, all eigenvectors of a real generalized symmetric definite eigenproblem using divide and conquer algorithm.

sytrd

sytrd_scratchpad_size

Reduces a real symmetric matrix to tridiagonal form.

ungbr

ungbr_scratchpad_size

Generates the complex unitary matrix \(Q\) or \(P^T\) determined by gebrd.

ungtr

ungtr_scratchpad_size

Generates the complex unitary matrix \(Q\) determined by hetrd.

unmtr

unmtr_scratchpad_size

Multiplies a complex matrix by the unitary matrix \(Q\) determined by hetrd.