tbsv#
Solves a system of linear equations whose coefficients are in a triangular band matrix.
Description
The tbsv
routines solve a system of linear equations whose
coefficients are in a triangular band matrix. The operation is
defined as:
where:
op(A
) is one of op(A
) = A
, or op(A
) =
A
T, or op(A
) = A
H,
A
is an n
-by-n
unit or non-unit, upper or lower
triangular band matrix, with (k
+ 1) diagonals,
b
and x
are vectors of length n
.
tbsv
supports the following precisions.
T
float
double
std::complex<float>
std::complex<double>
tbsv (Buffer Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
void tbsv(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)
}
namespace oneapi::mkl::blas::row_major {
void tbsv(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A
is upper or lower triangular. See oneMKL Defined Datatypes for more details.- trans
Specifies op(
A
), the transposition operation applied toA
. See oneMKL Defined Datatypes for more details.- unit_nonunit
Specifies whether the matrix
A
is unit triangular or not. See oneMKL Defined Datatypes for more details.- n
Number of rows and columns of
A
. Must be at least zero.- k
Number of sub/super-diagonals of the matrix
A
. Must be at least zero.- a
Buffer holding input matrix
A
. Must have size at leastlda
*n
. See Matrix Storage for more details.- lda
Leading dimension of matrix
A
. Must be at least (k
+ 1), and positive.- x
Buffer holding input vector
x
. The buffer must be of size at least (1 + (n
- 1)*abs(incx
)). See Matrix Storage for more details.- incx
Stride of vector
x
.
Output Parameters
- x
Buffer holding the solution vector
x
.
tbsv (USM Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event tbsv(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event tbsv(sycl::queue &queue,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A
is upper or lower triangular. See oneMKL Defined Datatypes for more details.- trans
Specifies op(
A
), the transposition operation applied toA
. See oneMKL Defined Datatypes for more details.- unit_nonunit
Specifies whether the matrix
A
is unit triangular or not. See oneMKL Defined Datatypes for more details.- n
Number of rows and columns of
A
. Must be at least zero.- k
Number of sub/super-diagonals of the matrix
A
. Must be at least zero.- a
Pointer to input matrix
A
. The array holding input matrixA
must have size at leastlda
*n
. See Matrix Storage for more details.- lda
Leading dimension of matrix
A
. Must be at least (k
+ 1), and positive.- x
Pointer to input vector
x
. The array holding input vectorx
must be of size at least (1 + (n
- 1)*abs(incx
)). See Matrix Storage for more details.- incx
Stride of vector
x
.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- x
Pointer to the solution vector
x
.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS Level 2 Routines