heevd#
Computes all eigenvalues and, optionally, all eigenvectors of a complex Hermitian matrix using divide and conquer algorithm.
Description
heevd
supports the following precisions.
T
std::complex<float>
std::complex<double>
The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix \(A\). In other words, it can compute the spectral factorization of \(A\) as: \(A = Z\Lambda Z^H\).
Here \(\Lambda\) is a real diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_i\), and \(Z\) is the (complex) unitary matrix whose columns are the eigenvectors \(z_{i}\). Thus,
\(Az_i = \lambda_i z_i\) for \(i = 1, 2, ..., n\).
If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the QL or QR algorithm.
heevd (Buffer Version)#
Syntax
namespace oneapi::mkl::lapack {
void heevd(sycl::queue &queue, oneapi::mkl::job jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, butter<T,1> &a, std::int64_t lda, sycl::buffer<realT,1> &w, sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}
Input Parameters
- queue
The queue where the routine should be executed.
- jobz
Must be
job::novec
orjob::vec
.If
jobz = job::novec
, then only eigenvalues are computed.If
jobz = job::vec
, then eigenvalues and eigenvectors are computed.- upper_lower
Must be
uplo::upper
oruplo::lower
.If
upper_lower = job::upper
, a stores the upper triangular part of \(A\).If
upper_lower = job::lower
, a stores the lower triangular part of \(A\).- n
The order of the matrix \(A\) (\(0 \le n\)).
- a
The buffer
a
, size (lda,*
). The buffera
contains the matrix \(A\). The second dimension ofa
must be at least \(\max(1, n)\).- lda
The leading dimension of
a
. Must be at least \(\max(1,n)\).- scratchpad_size
Size of scratchpad memory as a number of floating point elements of type
T
. Size should not be less than the value returned by heevd_scratchpad_size function.
Output Parameters
- a
If
jobz = job::vec
, then on exit this buffer is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\).- w
Buffer, size at least n. Contains the eigenvalues of the matrix \(A\) in ascending order.
- scratchpad
Buffer holding scratchpad memory to be used by routine for storing intermediate results.
heevd (USM Version)#
Syntax
namespace oneapi::mkl::lapack {
sycl::event heevd(sycl::queue &queue, oneapi::mkl::job jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, butter<T,1> &a, std::int64_t lda, RealT *w, T *scratchpad, std::int64_t scratchpad_size, const std::vector<sycl::event> &events = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- jobz
Must be
job::novec
orjob::vec
.If
jobz = job::novec
, then only eigenvalues are computed.If
jobz = job::vec
, then eigenvalues and eigenvectors are computed.- upper_lower
Must be
uplo::upper
oruplo::lower
.If
upper_lower = job::upper
, a stores the upper triangular part of \(A\).If
upper_lower = job::lower
, a stores the lower triangular part of \(A\).- n
The order of the matrix \(A\) (\(0 \le n\)).
- a
Pointer to array containing \(A\), size (
lda,*
).The second dimension ofa
must be at least \(\max(1, n)\).- lda
The leading dimension of
a
. Must be at least \(\max(1,n)\).- scratchpad_size
Size of scratchpad memory as a number of floating point elements of type
T
. Size should not be less than the value returned by heevd_scratchpad_size function.- events
List of events to wait for before starting computation. Defaults to empty list.
Output Parameters
- a
If
jobz = job::vec
, then on exit this array is overwritten by the unitary matrix \(Z\) which contains the eigenvectors of \(A\).- w
Pointer to array of size at least \(n\). Contains the eigenvalues of the matrix \(A\) in ascending order.
- scratchpad
Pointer to scratchpad memory to be used by routine for storing intermediate results.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines