hbmv#
Computes a matrix-vector product using a Hermitian band matrix.
Description
The hbmv
routines compute a scalar-matrix-vector product and add the
result to a scalar-vector product, with a Hermitian band matrix. The
operation is defined as
where:
alpha
and beta
are scalars,
A
is an n
-by-n
Hermitian band matrix, with k
super-diagonals,
x
and y
are vectors of length n
.
hbmv
supports the following precisions.
T
std::complex<float>
std::complex<double>
hbmv (Buffer Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
void hbmv(sycl::queue &queue,
onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)
}
namespace oneapi::mkl::blas::row_major {
void hbmv(sycl::queue &queue,
onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A
is upper or lower triangular. See oneMKL Defined Datatypes for more details.- n
Number of rows and columns of
A
. Must be at least zero.- k
Number of super-diagonals of the matrix
A
. Must be at least zero.- alpha
Scaling factor for the matrix-vector product.
- a
Buffer holding input matrix
A
. Must have size at leastlda
*n
. See Matrix Storage for more details.- lda
Leading dimension of matrix
A
. Must be at least (k
+ 1), and positive.- x
Buffer holding input vector
x
. The buffer must be of size at least (1 + (m
- 1)*abs(incx
)). See Matrix Storage for more details.- incx
Stride of vector
x
.- beta
Scaling factor for vector
y
.- y
Buffer holding input/output vector
y
. The buffer must be of size at least (1 + (n
- 1)*abs(incy
)). See Matrix Storage for more details.- incy
Stride of vector
y
.
Output Parameters
- y
Buffer holding the updated vector
y
.
hbmv (USM Version)#
Syntax
namespace oneapi::mkl::blas::column_major {
sycl::event hbmv(sycl::queue &queue,
onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
sycl::event hbmv(sycl::queue &queue,
onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})
}
Input Parameters
- queue
The queue where the routine should be executed.
- upper_lower
Specifies whether
A
is upper or lower triangular. See oneMKL Defined Datatypes for more details.- n
Number of rows and columns of
A
. Must be at least zero.- k
Number of super-diagonals of the matrix
A
. Must be at least zero.- alpha
Scaling factor for the matrix-vector product.
- a
Pointer to the input matrix
A
. The array holding input matrixA
must have size at leastlda
*n
. See Matrix Storage for more details.- lda
Leading dimension of matrix
A
. Must be at least (k
+ 1), and positive.- x
Pointer to input vector
x
. The array holding input vectorx
must be of size at least (1 + (m
- 1)*abs(incx
)). See Matrix Storage for more details.- incx
Stride of vector
x
.- beta
Scaling factor for vector
y
.- y
Pointer to input/output vector
y
. The array holding input/output vectory
must be of size at least (1 + (n
- 1)*abs(incy
)). See Matrix Storage for more details.- incy
Stride of vector
y
.- dependencies
List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.
Output Parameters
- y
Pointer to the updated vector
y
.
Return Values
Output event to wait on to ensure computation is complete.
Parent topic: BLAS Level 2 Routines