scal#

Computes the product of a vector by a scalar.

Description

The scal routines computes a scalar-vector product:

\[x \leftarrow alpha*x\]

where:

x is a vector of n elements,

alpha is a scalar.

scal supports the following precisions.

T

T_scalar

float

float

double

double

std::complex<float>

std::complex<float>

std::complex<double>

std::complex<double>

std::complex<float>

float

std::complex<double>

double

scal (Buffer Version)#

Syntax

namespace oneapi::mkl::blas::column_major {
    void scal(sycl::queue &queue,
              std::int64_t n,
              T_scalar alpha,
              sycl::buffer<T,1> &x,
              std::int64_t incx)
}
namespace oneapi::mkl::blas::row_major {
    void scal(sycl::queue &queue,
              std::int64_t n,
              T_scalar alpha,
              sycl::buffer<T,1> &x,
              std::int64_t incx)
}

Input Parameters

queue

The queue where the routine should be executed.

n

Number of elements in vector x.

alpha

Specifies the scalar alpha.

x

Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.

incx

Stride of vector x.

Output Parameters

x

Buffer holding updated buffer x.

scal (USM Version)#

Syntax

namespace oneapi::mkl::blas::column_major {
    sycl::event scal(sycl::queue &queue,
                     std::int64_t n,
                     T_scalar alpha,
                     T *x,
                     std::int64_t incx,
                     const std::vector<sycl::event> &dependencies = {})
}
namespace oneapi::mkl::blas::row_major {
    sycl::event scal(sycl::queue &queue,
                     std::int64_t n,
                     T_scalar alpha,
                     T *x,
                     std::int64_t incx,
                     const std::vector<sycl::event> &dependencies = {})
}

Input Parameters

queue

The queue where the routine should be executed.

n

Number of elements in vector x.

alpha

Specifies the scalar alpha.

x

Pointer to the input vector x. The array must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.

incx

Stride of vector x.

Output Parameters

x

Pointer to the updated array x.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: BLAS Level 1 Routines