layer_normalization.cpp¶
Annotated version: Layer Normalization Primitive Example
Annotated version: Layer Normalization Primitive Example
/******************************************************************************* * Copyright 2020-2022 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include <algorithm> #include <cmath> #include <iostream> #include <string> #include <vector> #include "example_utils.hpp" #include "oneapi/dnnl/dnnl.hpp" using namespace dnnl; using tag = memory::format_tag; using dt = memory::data_type; void layer_normalization_example(dnnl::engine::kind engine_kind) { dnnl::engine engine(engine_kind, 0); // Create dnnl::stream. dnnl::stream engine_stream(engine); // Tensor dimensions. const memory::dim T = 12, // time steps N = 3, // batch C = 227; // channels // Source (src) and destination (dst) tensors dimensions. const memory::dims src_dims = {T, N, C}; // Scale/shift tensor dimensions. memory::dims scale_shift_dims = {2, C}; // Allocate buffer. std::vector<float> src_data(product(src_dims)); std::vector<float> scale_shift_data(product(scale_shift_dims)); // Initialize src tensor. std::generate(src_data.begin(), src_data.end(), []() { static int i = 0; return std::cos(i++ / 10.f); }); auto mid = scale_shift_data.begin() + C; // Initialize scale. std::generate(scale_shift_data.begin(), mid, []() { static int i = 0; return std::sin(i++ * 2.f); }); // Initialize shift. std::generate(mid, scale_shift_data.end(), []() { static int i = 0; return std::tanh(float(i++)); }); // Create src memory descriptor and memory object. auto src_md = memory::desc(src_dims, dt::f32, tag::tnc); auto src_mem = memory(src_md, engine); // Create scale/shift memory object. auto scale_shift_mem = memory({scale_shift_dims, dt::f32, tag::nc}, engine); // Write data to memory object's handle. write_to_dnnl_memory(src_data.data(), src_mem); write_to_dnnl_memory(scale_shift_data.data(), scale_shift_mem); // Create operation descriptor. const float epsilon = 1.e-10f; auto lnorm_desc = layer_normalization_forward::desc(prop_kind::forward_training, src_md, epsilon, normalization_flags::use_scale_shift); // Create primitive descriptor. auto lnorm_pd = layer_normalization_forward::primitive_desc(lnorm_desc, engine); // Use the memory descriptors from the primitive to create memory objects // required for the primitive: mean, variance, scale/shift. auto mean_mem = memory(lnorm_pd.mean_desc(), engine); auto variance_mem = memory(lnorm_pd.variance_desc(), engine); // Create the primitive. auto lnorm_prim = layer_normalization_forward(lnorm_pd); // Primitive arguments. Set up in-place execution by assigning src as DST. std::unordered_map<int, memory> lnorm_args; lnorm_args.insert({DNNL_ARG_SRC, src_mem}); lnorm_args.insert({DNNL_ARG_MEAN, mean_mem}); lnorm_args.insert({DNNL_ARG_VARIANCE, variance_mem}); lnorm_args.insert({DNNL_ARG_SCALE_SHIFT, scale_shift_mem}); lnorm_args.insert({DNNL_ARG_DST, src_mem}); // Primitive execution: layer normalization. lnorm_prim.execute(engine_stream, lnorm_args); // Wait for the computation to finalize. engine_stream.wait(); // Read data from memory object's handle.s read_from_dnnl_memory(src_data.data(), src_mem); } int main(int argc, char **argv) { return handle_example_errors( layer_normalization_example, parse_engine_kind(argc, argv)); }