struct dnnl::deconvolution_forward::desc¶
Overview¶
Descriptor for a deconvolution forward propagation primitive. More…
#include <dnnl.hpp> struct desc { // fields dnnl_deconvolution_desc_t data; // construction desc( prop_kind aprop_kind, algorithm aalgorithm, const memory::desc& src_desc, const memory::desc& weights_desc, const memory::desc& bias_desc, const memory::desc& dst_desc, const memory::dims& strides, const memory::dims& padding_l, const memory::dims& padding_r ); desc( prop_kind aprop_kind, algorithm aalgorithm, const memory::desc& src_desc, const memory::desc& weights_desc, const memory::desc& dst_desc, const memory::dims& strides, const memory::dims& padding_l, const memory::dims& padding_r ); desc( prop_kind aprop_kind, algorithm aalgorithm, const memory::desc& src_desc, const memory::desc& weights_desc, const memory::desc& bias_desc, const memory::desc& dst_desc, const memory::dims& strides, const memory::dims& dilates, const memory::dims& padding_l, const memory::dims& padding_r ); desc( prop_kind aprop_kind, algorithm aalgorithm, const memory::desc& src_desc, const memory::desc& weights_desc, const memory::desc& dst_desc, const memory::dims& strides, const memory::dims& dilates, const memory::dims& padding_l, const memory::dims& padding_r ); };
Detailed Documentation¶
Descriptor for a deconvolution forward propagation primitive.
Construction¶
desc( prop_kind aprop_kind, algorithm aalgorithm, const memory::desc& src_desc, const memory::desc& weights_desc, const memory::desc& bias_desc, const memory::desc& dst_desc, const memory::dims& strides, const memory::dims& padding_l, const memory::dims& padding_r )
Constructs a descriptor for a deconvolution forward propagation primitive with bias.
Note
All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value of format_tag
.
Arrays strides
, padding_l
, and padding_r
contain values for spatial dimensions only and hence must have the same number of elements as there are spatial dimensions. The order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.
Parameters:
aprop_kind |
Propagation kind. Possible values are dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference. |
aalgorithm |
Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd. |
src_desc |
Source memory descriptor. |
weights_desc |
Weights memory descriptor. |
bias_desc |
Bias memory descriptor. Passing zero memory descriptor disables the bias term. |
dst_desc |
Destination memory descriptor. |
strides |
Vector of strides for spatial dimension. |
padding_l |
Vector of padding values for low indices for each spatial dimension |
padding_r |
Vector of padding values for high indices for each spatial dimension |
desc( prop_kind aprop_kind, algorithm aalgorithm, const memory::desc& src_desc, const memory::desc& weights_desc, const memory::desc& dst_desc, const memory::dims& strides, const memory::dims& padding_l, const memory::dims& padding_r )
Constructs a descriptor for a deconvolution forward propagation primitive without bias.
Note
All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value of format_tag
.
Arrays strides
, padding_l
, and padding_r
contain values for spatial dimensions only and hence must have the same number of elements as there are spatial dimensions. The order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.
Parameters:
aprop_kind |
Propagation kind. Possible values are dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference. |
aalgorithm |
Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd. |
src_desc |
Source memory descriptor. |
weights_desc |
Weights memory descriptor. |
dst_desc |
Destination memory descriptor. |
strides |
Vector of strides for spatial dimension. |
padding_l |
Vector of padding values for low indices for each spatial dimension |
padding_r |
Vector of padding values for high indices for each spatial dimension |
desc( prop_kind aprop_kind, algorithm aalgorithm, const memory::desc& src_desc, const memory::desc& weights_desc, const memory::desc& bias_desc, const memory::desc& dst_desc, const memory::dims& strides, const memory::dims& dilates, const memory::dims& padding_l, const memory::dims& padding_r )
Constructs a descriptor for a dilated deconvolution forward propagation primitive with bias.
Note
All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value of format_tag
.
Arrays strides
, dilates
, padding_l
, and padding_r
contain values for spatial dimensions only and hence must have the same number of elements as there are spatial dimensions. The order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.
Parameters:
aprop_kind |
Propagation kind. Possible values are dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference. |
aalgorithm |
Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd. |
src_desc |
Source memory descriptor. |
weights_desc |
Weights memory descriptor. |
bias_desc |
Bias memory descriptor. Passing zero memory descriptor disables the bias term. |
dst_desc |
Destination memory descriptor. |
strides |
Vector of strides for spatial dimension. |
dilates |
Dilations for each spatial dimension. A zero value means no dilation in the corresponding dimension. |
padding_l |
Vector of padding values for low indices for each spatial dimension |
padding_r |
Vector of padding values for high indices for each spatial dimension |
desc( prop_kind aprop_kind, algorithm aalgorithm, const memory::desc& src_desc, const memory::desc& weights_desc, const memory::desc& dst_desc, const memory::dims& strides, const memory::dims& dilates, const memory::dims& padding_l, const memory::dims& padding_r )
Constructs a descriptor for a dilated deconvolution forward propagation primitive without bias.
Note
All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value of format_tag
.
Arrays strides
, dilates
, padding_l
, and padding_r
contain values for spatial dimensions only and hence must have the same number of elements as there are spatial dimensions. The order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.
Parameters:
aprop_kind |
Propagation kind. Possible values are dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference. |
aalgorithm |
Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd. |
src_desc |
Source memory descriptor. |
weights_desc |
Weights memory descriptor. |
dst_desc |
Destination memory descriptor. |
strides |
Vector of strides for spatial dimension. |
dilates |
Dilations for each spatial dimension. A zero value means no dilation in the corresponding dimension. |
padding_l |
Vector of padding values for low indices for each spatial dimension |
padding_r |
Vector of padding values for high indices for each spatial dimension |