Attributes¶
Overview¶
A container for parameters that extend primitives behavior. More…
// typedefs typedef struct dnnl_primitive_attr* dnnl_primitive_attr_t; typedef const struct dnnl_primitive_attr* const_dnnl_primitive_attr_t; typedef struct dnnl_post_ops* dnnl_post_ops_t; typedef const struct dnnl_post_ops* const_dnnl_post_ops_t; // enums enum dnnl::algorithm; enum dnnl_fpmath_mode_t; enum dnnl_scratchpad_mode_t; enum dnnl::fpmath_mode; enum dnnl::prop_kind; enum dnnl::scratchpad_mode; // structs struct dnnl_post_ops; struct dnnl_primitive_attr; struct dnnl::post_ops; // global functions dnnl_fpmath_mode_t dnnl::convert_to_c(fpmath_mode mode); dnnl_scratchpad_mode_t dnnl::convert_to_c(scratchpad_mode mode); dnnl_prop_kind_t dnnl::convert_to_c(prop_kind akind); dnnl_alg_kind_t dnnl::convert_to_c(algorithm aalgorithm); dnnl_status_t DNNL_API dnnl_primitive_attr_create(dnnl_primitive_attr_t* attr); dnnl_status_t DNNL_API dnnl_primitive_attr_clone( dnnl_primitive_attr_t* attr, const_dnnl_primitive_attr_t existing_attr ); dnnl_status_t DNNL_API dnnl_primitive_attr_destroy(dnnl_primitive_attr_t attr); dnnl_status_t DNNL_API dnnl_primitive_attr_get_fpmath_mode( const_dnnl_primitive_attr_t attr, dnnl_fpmath_mode_t* mode ); dnnl_status_t DNNL_API dnnl_primitive_attr_set_fpmath_mode( dnnl_primitive_attr_t attr, dnnl_fpmath_mode_t mode ); dnnl_status_t DNNL_API dnnl_primitive_attr_get_scratchpad_mode( const_dnnl_primitive_attr_t attr, dnnl_scratchpad_mode_t* mode ); dnnl_status_t DNNL_API dnnl_primitive_attr_set_scratchpad_mode( dnnl_primitive_attr_t attr, dnnl_scratchpad_mode_t mode ); dnnl_status_t DNNL_API dnnl_primitive_attr_get_output_scales( const_dnnl_primitive_attr_t attr, dnnl_dim_t* count, int* mask, const float** scales ); dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales( dnnl_primitive_attr_t attr, dnnl_dim_t count, int mask, const float* scales ); dnnl_status_t DNNL_API dnnl_primitive_attr_get_scales( dnnl_primitive_attr_t attr, int arg, dnnl_dim_t* count, int* mask, const float** scales ); dnnl_status_t DNNL_API dnnl_primitive_attr_set_scales( dnnl_primitive_attr_t attr, int arg, dnnl_dim_t count, int mask, const float* scales ); dnnl_status_t DNNL_API dnnl_primitive_attr_get_zero_points( const_dnnl_primitive_attr_t attr, int arg, dnnl_dim_t* count, int* mask, const int32_t** zero_points ); dnnl_status_t DNNL_API dnnl_primitive_attr_set_zero_points( dnnl_primitive_attr_t attr, int arg, dnnl_dim_t count, int mask, const int32_t* zero_points ); dnnl_status_t DNNL_API dnnl_primitive_attr_get_post_ops( const_dnnl_primitive_attr_t attr, const_dnnl_post_ops_t* post_ops ); dnnl_status_t DNNL_API dnnl_primitive_attr_set_post_ops( dnnl_primitive_attr_t attr, const_dnnl_post_ops_t post_ops ); dnnl_status_t DNNL_API dnnl_post_ops_create(dnnl_post_ops_t* post_ops); dnnl_status_t DNNL_API dnnl_post_ops_destroy(dnnl_post_ops_t post_ops); int DNNL_API dnnl_post_ops_len(const_dnnl_post_ops_t post_ops); dnnl_primitive_kind_t DNNL_API dnnl_post_ops_get_kind( const_dnnl_post_ops_t post_ops, int index ); dnnl_status_t DNNL_API dnnl_post_ops_append_sum( dnnl_post_ops_t post_ops, float scale ); dnnl_status_t DNNL_API dnnl_post_ops_append_sum_v2( dnnl_post_ops_t post_ops, float scale, dnnl_data_type_t data_type ); dnnl_status_t DNNL_API dnnl_post_ops_append_sum_v3( dnnl_post_ops_t post_ops, float scale, int32_t zero_point, dnnl_data_type_t data_type ); dnnl_status_t DNNL_API dnnl_post_ops_get_params_sum( const_dnnl_post_ops_t post_ops, int index, float* scale ); dnnl_status_t DNNL_API dnnl_post_ops_get_params_sum_v2( const_dnnl_post_ops_t post_ops, int index, float* scale, dnnl_data_type_t* data_type ); dnnl_status_t DNNL_API dnnl_post_ops_get_params_sum_v3( const_dnnl_post_ops_t post_ops, int index, float* scale, int32_t* zero_point, dnnl_data_type_t* data_type ); dnnl_status_t DNNL_API dnnl_post_ops_append_eltwise( dnnl_post_ops_t post_ops, float scale, dnnl_alg_kind_t alg_kind, float alpha, float beta ); dnnl_status_t DNNL_API dnnl_post_ops_get_params_eltwise( const_dnnl_post_ops_t post_ops, int index, float* scale, dnnl_alg_kind_t* alg_kind, float* alpha, float* beta ); dnnl_status_t DNNL_API dnnl_post_ops_append_dw_k3s1p1( dnnl_post_ops_t post_ops, dnnl_data_type_t weights_data_type, dnnl_data_type_t bias_data_type, dnnl_data_type_t dst_data_type, dnnl_dim_t count, int mask, const float* scales ); dnnl_status_t DNNL_API dnnl_post_ops_get_params_dw_k3s1p1( const_dnnl_post_ops_t post_ops, int index, dnnl_data_type_t* weights_data_type, dnnl_data_type_t* bias_data_type, dnnl_data_type_t* dst_data_type, dnnl_dim_t* count, int* mask, const float** scales ); dnnl_status_t DNNL_API dnnl_post_ops_append_dw_k3s2p1( dnnl_post_ops_t post_ops, dnnl_data_type_t weights_data_type, dnnl_data_type_t bias_data_type, dnnl_data_type_t dst_data_type, dnnl_dim_t count, int mask, const float* scales ); dnnl_status_t DNNL_API dnnl_post_ops_get_params_dw_k3s2p1( const_dnnl_post_ops_t post_ops, int index, dnnl_data_type_t* weights_data_type, dnnl_data_type_t* bias_data_type, dnnl_data_type_t* dst_data_type, dnnl_dim_t* count, int* mask, const float** scales ); dnnl_status_t DNNL_API dnnl_post_ops_append_binary( dnnl_post_ops_t post_ops, dnnl_alg_kind_t alg_kind, const dnnl_memory_desc_t* src1_desc ); dnnl_status_t DNNL_API dnnl_post_ops_get_params_binary( const_dnnl_post_ops_t post_ops, int index, dnnl_alg_kind_t* alg_kind, const dnnl_memory_desc_t** src1_desc ); dnnl_status_t DNNL_API dnnl_post_ops_append_prelu( dnnl_post_ops_t post_ops, int mask ); dnnl_status_t DNNL_API dnnl_post_ops_get_params_prelu( const_dnnl_post_ops_t post_ops, int index, int* mask ); dnnl_status_t DNNL_API dnnl_primitive_attr_set_rnn_data_qparams( dnnl_primitive_attr_t attr, const float scale, const float shift ); dnnl_status_t DNNL_API dnnl_primitive_attr_get_rnn_data_qparams( const_dnnl_primitive_attr_t attr, float* scale, float* shift ); dnnl_status_t DNNL_API dnnl_primitive_attr_set_rnn_weights_qparams( dnnl_primitive_attr_t attr, dnnl_dim_t count, int mask, const float* scales ); dnnl_status_t DNNL_API dnnl_primitive_attr_get_rnn_weights_qparams( const_dnnl_primitive_attr_t attr, dnnl_dim_t* count, int* mask, const float** scales ); dnnl_status_t DNNL_API dnnl_primitive_attr_set_rnn_weights_projection_qparams( dnnl_primitive_attr_t attr, dnnl_dim_t count, int mask, const float* scales ); dnnl_status_t DNNL_API dnnl_primitive_attr_get_rnn_weights_projection_qparams( const_dnnl_primitive_attr_t attr, dnnl_dim_t* count, int* mask, const float** scales );
Detailed Documentation¶
A container for parameters that extend primitives behavior.
Attributes can also contain Post-ops, which are computations executed after the primitive.
See also:
Primitive Attributes: Post-ops
Typedefs¶
typedef struct dnnl_primitive_attr* dnnl_primitive_attr_t
A primitive descriptor attributes handle that controls primitive behavior.
typedef const struct dnnl_primitive_attr* const_dnnl_primitive_attr_t
A constant primitive descriptor attributes handle.
typedef struct dnnl_post_ops* dnnl_post_ops_t
A post operation chain handle.
typedef const struct dnnl_post_ops* const_dnnl_post_ops_t
A constant post operation chain handle.
Global Functions¶
dnnl_fpmath_mode_t dnnl::convert_to_c(fpmath_mode mode)
Converts an fpmath mode enum value from C++ API to C API type.
Parameters:
mode |
C++ API fpmath mode enum value. |
Returns:
Corresponding C API fpmath mode enum value.
dnnl_scratchpad_mode_t dnnl::convert_to_c(scratchpad_mode mode)
Converts a scratchpad mode enum value from C++ API to C API type.
Parameters:
mode |
C++ API scratchpad mode enum value. |
Returns:
Corresponding C API scratchpad mode enum value.
dnnl_prop_kind_t dnnl::convert_to_c(prop_kind akind)
Converts propagation kind enum value from C++ API to C API type.
Parameters:
akind |
C++ API propagation kind enum value. |
Returns:
Corresponding C API propagation kind enum value.
dnnl_alg_kind_t dnnl::convert_to_c(algorithm aalgorithm)
Converts algorithm kind enum value from C++ API to C API type.
Parameters:
aalgorithm |
C++ API algorithm kind enum value. |
Returns:
Corresponding C API algorithm kind enum value.
dnnl_status_t DNNL_API dnnl_primitive_attr_create(dnnl_primitive_attr_t* attr)
Creates an empty (default) primitive attributes with all the parameters set to their default values.
Empty attributes are implied whenever the respective argument is NULL.
Parameters:
attr |
Output primitive attributes. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_clone( dnnl_primitive_attr_t* attr, const_dnnl_primitive_attr_t existing_attr )
Clones primitive attributes.
Parameters:
attr |
Output primitive attributes. |
existing_attr |
Primitive attributes to clone. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_destroy(dnnl_primitive_attr_t attr)
Destroys primitive attributes.
Parameters:
attr |
Primitive attributes to destroy. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_get_fpmath_mode( const_dnnl_primitive_attr_t attr, dnnl_fpmath_mode_t* mode )
Returns the floating-point math mode primitive attribute.
Parameters:
attr |
Primitive attributes. |
mode |
Output FP math mode. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_set_fpmath_mode( dnnl_primitive_attr_t attr, dnnl_fpmath_mode_t mode )
Sets the floating-point math mode primitive attributes.
Parameters:
attr |
Primitive attributes. |
mode |
FP math mode. The possible values are: dnnl_fpmath_mode_strict (default), dnnl_fpmath_mode_bf16, dnnl_fpmath_mode_f16, dnnl_fpmath_mode_any. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_get_scratchpad_mode( const_dnnl_primitive_attr_t attr, dnnl_scratchpad_mode_t* mode )
Returns the primitive attributes scratchpad mode.
Parameters:
attr |
Primitive attributes. |
mode |
Output scratchpad mode. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_set_scratchpad_mode( dnnl_primitive_attr_t attr, dnnl_scratchpad_mode_t mode )
Sets primitive attributes scratchpad mode.
Parameters:
attr |
Primitive attributes. |
mode |
Scratchpad mode. The possible values are: dnnl_scratchpad_mode_library (default) and dnnl_scratchpad_mode_user. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_get_output_scales( const_dnnl_primitive_attr_t attr, dnnl_dim_t* count, int* mask, const float** scales )
Returns primitive attributes output scaling factors correspondence mask and values.
Warning
The scales
array is an internal part of the primitive attributes attr
, so it is an error to modify or destroy the scales
array.
Warning
The lifetime of scales
array is the same as that of the primitive attributes attr
to which it belongs, so it is an error to use scales
after attr
is destroyed.
Parameters:
attr |
Primitive attributes. |
count |
Output length of the array of scaling factors |
mask |
Output scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Output pointer to a constant array of scaling factors. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales( dnnl_primitive_attr_t attr, dnnl_dim_t count, int mask, const float* scales )
Sets output scaling factors correspondence mask and values.
Note
The order of dimensions does not depend on how elements are laid out in memory. For example:
for a 2D CNN activations tensor the order is always (n, c)
for a 4D CNN activations tensor the order is always (n, c, h, w)
for a 5D CNN weights tensor the order is always (g, oc, ic, kh, kw)
Example usage:
int mb = 32, oc = 32, oh = 14, ow = 14; // convolution output params float scales[oc] = { ... }; // unique output scales per output channel int oc_dim = 1; // mb_dim = 0, channel_dim = 1, height_dim = 2, ... dnnl_convolution_desc_t conv_d; // create a convolution descriptor dnnl_primitive_attr_t attr; dnnl_primitive_attr_create(&attr); // create primitive attributes dnnl_primitive_attr_set_output_scales(attr, oc, 1 << oc_dim, scales); dnnl_primitive_desc_t conv_pd; dnnl_primitive_desc_create(&conv_pd, &conv_d, attr, engine, NULL);
Parameters:
attr |
Primitive attributes. |
count |
Length of the array of scaling factors |
mask |
Scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Array of output scaling factors. If the output scaling factors are known at the time of this call, this array must contain
\[count = \prod\limits_{d \in mask} output.dims[d].\]
Violations can only be detected when the attributes are used to create a primitive descriptor. If the output scaling factors are not known at the time of the call, this array must contain a single DNNL_RUNTIME_F32_VAL value and the output scaling factors must be passed at execution time as an argument with index DNNL_ARG_ATTR_OUTPUT_SCALES. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_get_scales( dnnl_primitive_attr_t attr, int arg, dnnl_dim_t* count, int* mask, const float** scales )
Returns primitive attributes scaling factors correspondence mask and values for a given memory argument.
Warning
The output scales
array is an internal part of the primitive attributes attr
, so it is an error to modify or destroy the scales
array.
Warning
The lifetime of the scales
array is the same as that of the primitive attributes attr
to which it belongs, so it is an error to use scales
after attr
is destroyed.
Parameters:
attr |
Primitive attributes. |
arg |
Parameter argument index as passed to the dnnl_primitive_execute() call. |
count |
Output length of the array of scaling factors |
mask |
Output scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Output pointer to a constant array of float scaling factors. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_set_scales( dnnl_primitive_attr_t attr, int arg, dnnl_dim_t count, int mask, const float* scales )
Sets primitive attributes scaling factors for primitive operations for a given memory argument.
Parameters:
attr |
Primitive attributes. |
arg |
Parameter argument index as passed to the dnnl_primitive_execute() call. |
count |
Length of the array of scaling factors |
mask |
Scaling factors correspondence mask that defines the correspondence between the tensor dimensions and the |
scales |
Constant array of float scaling factors. This array must contain
\[count = \prod\limits_{d \in mask} output.dims[d].\]
|
Returns:
dnnl_success on success and a status describing the error otherwise.
See also:
dnnl_primitive_attr_set_output_scales
dnnl_status_t DNNL_API dnnl_primitive_attr_get_zero_points( const_dnnl_primitive_attr_t attr, int arg, dnnl_dim_t* count, int* mask, const int32_t** zero_points )
Returns count
, correspondence zero point mask
, and a pointer to a constant int32_t array of zero_points
for given attr
and memory argument (index), previously set by dnnl_primitive_attr_set_zero_points.
Warning
The output zero_points
array is an internal part of the primitive attributes attr
, so it is an error to modify or destroy the zero_points
array.
Warning
The lifetime of zero_points
array is the same as that of the primitive attributes attr
to which it belongs, so it is an error to use zero_points
after attr
is destroyed.
Parameters:
attr |
Primitive attributes. |
arg |
Parameter argument index as passed to the dnnl_primitive_execute() call. |
count |
Output length of the array of zero points |
mask |
Output zero points correspondence mask that defines the correspondence between the output tensor dimensions and the |
zero_points |
Output pointer to a constant array of int32_t zero points. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_set_zero_points( dnnl_primitive_attr_t attr, int arg, dnnl_dim_t count, int mask, const int32_t* zero_points )
Sets primitive attributes zero points for primitive operations for a given memory argument.
Parameters:
attr |
Primitive attributes. |
arg |
Parameter argument index as passed to the dnnl_primitive_execute() call. |
count |
Length of the array of zero points |
mask |
Zero point correspondence mask that defines the correspondence between the tensor dimensions and the |
zero_points |
Constant array of int32_t zero points. If the zero points are known at the time of this call, this array must contain
\[count = \prod\limits_{d \in mask} output.dims[d].\]
If the zero points are not known at the time of the call, this array must contain a single DNNL_RUNTIME_S32_VAL and the zero points must be passed at execution time as an argument with index DNNL_ARG_ATTR_ZERO_POINTS. |
Returns:
dnnl_success on success and a status describing the error otherwise.
See also:
dnnl_primitive_attr_set_output_scales
dnnl_status_t DNNL_API dnnl_primitive_attr_get_post_ops( const_dnnl_primitive_attr_t attr, const_dnnl_post_ops_t* post_ops )
Returns primitive attributes post-ops.
Warning
The output post_ops
points to the internal attr
field, so it is an error to modify or destroy them. The lifetime of post_ops
is the same as that of the attr
it belongs to, so it is an error to use post_ops
after attr
has been destroyed.
Parameters:
attr |
Primitive attributes. |
post_ops |
Output post-ops. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_set_post_ops( dnnl_primitive_attr_t attr, const_dnnl_post_ops_t post_ops )
Sets primitive attributes post-ops.
Note
There is no way to check whether the post-ops would be supported by the target primitive. Any error will be reported by the dnnl_primitive_desc_create() function call.
Parameters:
attr |
Primitive attributes. |
post_ops |
Post-ops to set. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_post_ops_create(dnnl_post_ops_t* post_ops)
Creates empty post-ops sequence.
Parameters:
post_ops |
Output post-ops. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_post_ops_destroy(dnnl_post_ops_t post_ops)
Destroys post-ops.
Parameters:
post_ops |
Post-ops to destroy. |
Returns:
dnnl_success on success and a status describing the error otherwise.
int DNNL_API dnnl_post_ops_len(const_dnnl_post_ops_t post_ops)
Returns the length of post-ops.
Parameters:
post_ops |
Post-ops. |
Returns:
The number of post-ops entries.
dnnl_primitive_kind_t DNNL_API dnnl_post_ops_get_kind( const_dnnl_post_ops_t post_ops, int index )
Returns the kind of a post-op entry.
Parameters:
post_ops |
Post-ops. |
index |
Post-op entry index. |
Returns:
The kind of the post-op with the specified index.
dnnl_undefined_primitive if there is no post-op at the specified index.
dnnl_status_t DNNL_API dnnl_post_ops_append_sum( dnnl_post_ops_t post_ops, float scale )
Appends an accumulation (sum) to post-ops.
Prior to accumulating the result, the previous value is multiplied by a scale.
The kind of this post-op is dnnl_sum.
This feature may improve performance for cases like residual learning blocks, where the result of convolution is accumulated to the previously computed activations. The parameter scale
may be used for the integer-based computations when the result and previous activations have different logical scaling factors.
In the simplest case where the accumulation is the only post-op, the computations will be:
dst[:] <- scale * dst[:] + op(...) // instead of dst[:] <- op(...)
Note
This post-op executes in-place and does not change the destination layout.
Parameters:
post_ops |
Post-ops. |
scale |
Accumulation scaling factor. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_post_ops_append_sum_v2( dnnl_post_ops_t post_ops, float scale, dnnl_data_type_t data_type )
Appends an accumulation v2 (sum) to post-ops.
Prior to accumulating the result, the previous value is multiplied by a scale.
The kind of this post-op is dnnl_sum.
This feature may improve performance for cases like residual learning blocks, where the result of convolution is accumulated to the previously computed activations. The parameter scale
may be used for the integer-based computations when the result and previous activations have different logical scaling factors.
In the simplest case where the accumulation is the only post-op, the computations will be:
dst[:] <- scale * dst[:] + op(...) // instead of dst[:] <- op(...)
If data_type
is specified, original dst tensor will be reinterpreted as a tensor with provided data type. Since it is reinterpretation, data_type and dst data type should have the same size. As a result, computations will be:
dst[:] <- scale * as_data_type(dst[:]) + op(...)
// instead of dst[:] <- op(...)
Note
This post-op executes in-place and does not change the destination layout.
Parameters:
post_ops |
Post-ops. |
scale |
Accumulation scaling factor. |
data_type |
Accumulation data_type. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_post_ops_append_sum_v3( dnnl_post_ops_t post_ops, float scale, int32_t zero_point, dnnl_data_type_t data_type )
Appends an accumulation v3 (sum) to post-ops.
Prior to accumulating the result, a zero point is subtracted from the previous value and is multiplied by the scale.
The kind of this post-op is dnnl_sum.
This feature may improve performance for cases like dequantize the asymmetrically quantized sum’s src1 tensor to f32 domain before performing the sum operation by subtracting the zero_point
before the scaling.
In the simplest case where accumulation is the only post-op, the computations will be:
dst[:] <- scale * (dst[:] - zero_point) + op(...)
// instead of dst[:] <- op(...)
If data_type
is specified, original dst tensor will be reinterpreted as a tensor with provided data type. Since it is reinterpretation, data_type and dst data type should have the same size. As a result, computations will be:
dst[:] <- scale * (as_data_type(dst[:]) - zero_point) + op(...)
// instead of dst[:] <- op(...)
Note
This post-op executes in-place and does not change the destination layout.
Parameters:
post_ops |
Post-ops. |
scale |
Accumulation scaling factor. |
zero_point |
Single scalar int32_t value of zero point. |
data_type |
Accumulation data_type. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_post_ops_get_params_sum( const_dnnl_post_ops_t post_ops, int index, float* scale )
Returns the parameters of an accumulation (sum) post-op.
Parameters:
post_ops |
Post-ops. |
index |
Index of the sum post-op. |
scale |
Output accumulation scaling factor. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_invalid_arguments if index
does not refer to a sum post-op.
dnnl_status_t DNNL_API dnnl_post_ops_get_params_sum_v2( const_dnnl_post_ops_t post_ops, int index, float* scale, dnnl_data_type_t* data_type )
Returns the parameters of an accumulation (sum) post-op with a data type parameter.
Parameters:
post_ops |
Post-ops. |
index |
Index of the sum post-op. |
scale |
Output accumulation scaling factor. |
data_type |
Data type for accumulation. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_post_ops_get_params_sum_v3( const_dnnl_post_ops_t post_ops, int index, float* scale, int32_t* zero_point, dnnl_data_type_t* data_type )
Returns the parameters of an accumulation (sum) post-op with zero point and data type parameter.
Parameters:
post_ops |
Post-ops. |
index |
Index of the sum post-op. |
scale |
Output accumulation scaling factor. |
zero_point |
Zero point. |
data_type |
Data type for accumulation. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_post_ops_append_eltwise( dnnl_post_ops_t post_ops, float scale, dnnl_alg_kind_t alg_kind, float alpha, float beta )
Appends an elementwise post-op.
The kind of this post operation is dnnl_eltwise.
In the simplest case when the elementwise is the only post operation, the computations would be:
dst[:] <- scale * eltwise_op (op(...)) // instead of dst[:] <- op(...)
where eltwise_op is configured with the given parameters.
Parameters:
post_ops |
Post-ops. |
scale |
Scaling factor. |
alg_kind |
Elementwise algorithm for the post-op. |
alpha |
Alpha parameter for the elementwise algorithm. |
beta |
Beta parameter for the elementwise algorithm. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_post_ops_get_params_eltwise( const_dnnl_post_ops_t post_ops, int index, float* scale, dnnl_alg_kind_t* alg_kind, float* alpha, float* beta )
Returns the parameters of an elementwise post-op.
Parameters:
post_ops |
Post-ops. |
index |
Index of the elementwise post-op. |
scale |
Output scaling factor. |
alg_kind |
Output elementwise algorithm kind. |
alpha |
Output alpha parameter for the elementwise algorithm. |
beta |
Output beta parameter for the elementwise algorithm. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_invalid_arguments if index
does not refer to an elementwise post-op.
dnnl_status_t DNNL_API dnnl_post_ops_append_dw_k3s1p1( dnnl_post_ops_t post_ops, dnnl_data_type_t weights_data_type, dnnl_data_type_t bias_data_type, dnnl_data_type_t dst_data_type, dnnl_dim_t count, int mask, const float* scales )
Appends a depthwise post-op convolution with stride 1.
This post-op can only be fused with a 2D 1x1 convolution (convolution with weights spatial dimension equal to 1 i.e., kh=kw=1).
The kind of this post-op is dnnl_convolution.
The number of outputs for primitive remain same as before. The output size remain same as the original primitive due to stride=1.
The Post-op can be defined as:
dst[:] <- scales * (conv_dw(conv_1x1))
See dev_guide_attributes_post_ops_depthwise and dev_guide_attributes_post_ops_depthwise_fusion for more info.
Parameters:
post_ops |
Post-ops. |
weights_data_type |
Weights data type of depthwise post-op |
bias_data_type |
Bias data type of depthwise post-op |
dst_data_type |
Output data type of depthwise post-op |
count |
Output length of the array of scaling factors |
mask |
Output scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Output pointer to a constant array of float scaling factors. |
Returns:
dnnl_success on success and a status describing the error otherwise
dnnl_status_t DNNL_API dnnl_post_ops_get_params_dw_k3s1p1( const_dnnl_post_ops_t post_ops, int index, dnnl_data_type_t* weights_data_type, dnnl_data_type_t* bias_data_type, dnnl_data_type_t* dst_data_type, dnnl_dim_t* count, int* mask, const float** scales )
Returns the parameters of an depthwise post-op with stride 1.
Parameters:
post_ops |
Post-ops. |
index |
Index of the elementwise post-op. |
weights_data_type |
Weights data type of depthwise post-op |
bias_data_type |
Bias data type of depthwise post-op |
dst_data_type |
Output data type of depthwise post-op |
count |
Output length of the array of scaling factors |
mask |
Output scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Output pointer to a constant array of float scaling factors. |
Returns:
dnnl_success on success and a status describing the error otherwise
dnnl_status_t DNNL_API dnnl_post_ops_append_dw_k3s2p1( dnnl_post_ops_t post_ops, dnnl_data_type_t weights_data_type, dnnl_data_type_t bias_data_type, dnnl_data_type_t dst_data_type, dnnl_dim_t count, int mask, const float* scales )
Appends a depthwise post-op convolution with stride 2.
This post-op can only be fused with a 2D 1x1 convolution (convolution with weights spatial dimension equal to 1 i.e., kh=kw=1).
The kind of this post-op is dnnl_convolution.
The number of outputs for primitive remain same as before. The output spatial size can be derived as below:
output_height = ceil(output_height_1x1_convolution, stride) output_width = ceil(output_width_1x1_convolution, stride)
The Post-op can be defined as:
dst[:] <- scales * (conv_dw(conv_1x1))
See dev_guide_attributes_post_ops_depthwise and dev_guide_attributes_post_ops_depthwise_fusion for more info.
Parameters:
post_ops |
Post-ops. |
weights_data_type |
Weights data type of depthwise post-op |
bias_data_type |
Bias data type of depthwise post-op |
dst_data_type |
Output data type of depthwise post-op |
count |
Output length of the array of scaling factors |
mask |
Output scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Output pointer to a constant array of float scaling factors. |
Returns:
dnnl_success on success and a status describing the error otherwise
dnnl_status_t DNNL_API dnnl_post_ops_get_params_dw_k3s2p1( const_dnnl_post_ops_t post_ops, int index, dnnl_data_type_t* weights_data_type, dnnl_data_type_t* bias_data_type, dnnl_data_type_t* dst_data_type, dnnl_dim_t* count, int* mask, const float** scales )
Returns the parameters of an depthwise post-op with stride 2.
Parameters:
post_ops |
Post-ops. |
index |
Index of the elementwise post-op. |
weights_data_type |
Weights data type of depthwise post-op |
bias_data_type |
Bias data type of depthwise post-op |
dst_data_type |
Output data type of depthwise post-op |
count |
Output length of the array of scaling factors |
mask |
Output scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Output pointer to a constant array of float scaling factors. |
Returns:
dnnl_success on success and a status describing the error otherwise
dnnl_status_t DNNL_API dnnl_post_ops_append_binary( dnnl_post_ops_t post_ops, dnnl_alg_kind_t alg_kind, const dnnl_memory_desc_t* src1_desc )
Appends a binary post-op.
The kind of this post operation is dnnl_binary.
In the simplest case when the binary is the only post operation, the computations would be:
dst[:] <- binary_op (dst[:], another_input[:])
where binary_op is configured with the given parameters. binary_op supports broadcast semantics for a second operand.
Parameters:
post_ops |
Post-ops. |
alg_kind |
Binary algorithm for the post-op. |
src1_desc |
Memory descriptor of a second operand. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_post_ops_get_params_binary( const_dnnl_post_ops_t post_ops, int index, dnnl_alg_kind_t* alg_kind, const dnnl_memory_desc_t** src1_desc )
Returns the parameters of a binary post-op.
Parameters:
post_ops |
Post-ops. |
index |
Index of the binary post-op. |
alg_kind |
Output binary algorithm kind. |
src1_desc |
Output memory descriptor of a second operand. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_invalid_arguments if index
does not refer to a binary post-op.
dnnl_status_t DNNL_API dnnl_post_ops_append_prelu( dnnl_post_ops_t post_ops, int mask )
Appends a prelu forward post-op.
The kind of this post-op is dnnl::primitive::kind::prelu.
The post-op can be defined as:
dst[:] <- prelu(dst[:], weights[:])
prelu:
dst[:] <- dst[:] if dst[:] > 0
dst[:] <- dst[:] * weights[:] if dst[:] <= 0
Note
The order of dimensions does not depend on how elements are laid out in memory. For example:
for a 2D CNN activations tensor the order is always (n, c)
for a 4D CNN activations tensor the order is always (n, c, h, w)
for a 5D CNN weights tensor the order is always (g, oc, ic, kh, kw)
Prelu weights tensor is passed in runtime execution phase. Prelu weights tensor data type is implicitly assumed as f32 using plain layout (a, ab, acb, acdb, acdeb)
Parameters:
mask |
Defines the correspondence between the output tensor dimensions and the prelu weights tensor. The set i-th bit indicates that a dedicated weights value is used for each index along that dimension. Set the mask to 0 to use a common weights value for the whole output tensor. |
dnnl_status_t DNNL_API dnnl_post_ops_get_params_prelu( const_dnnl_post_ops_t post_ops, int index, int* mask )
Returns the parameters of a prelu post-op.
Parameters:
post_ops |
Post-ops. |
index |
Index of the preu post-op. |
mask |
Mask of the prelu post-op. |
dnnl_status_t DNNL_API dnnl_primitive_attr_set_rnn_data_qparams( dnnl_primitive_attr_t attr, const float scale, const float shift )
Set quantization scale and shift parameters for RNN data tensors.
For performance reasons, the low-precision configuration of the RNN primitives expects input activations to have the unsigned 8-bit integer data type. The scale and shift parameters are used to quantize floating-point data to unsigned integer and must be passed to the RNN primitive using attributes.
The quantization formula is scale * data + shift
.
Note
Quantization scale and shift are common for src_layer, src_iter, dst_iter, and dst_layer.
Example usage:
// RNN parameters int l = 2, t = 2, mb = 32, sic = 32, slc = 32, dic = 32, dlc = 32; // Activations quantization parameters float scale = 63.f, shift = 64.f; dnnl_primitive_attr_t rnn_attr; // Create default attributes dnnl_primitive_attr_create(&rnn_attr); // Set scale and shift for int8 quantization of activation dnnl_primitive_attr_set_rnn_data_qparams(rnn_attr, scale, shift); // Create and configure rnn op_desc dnnl_rnn_desc_t rnn_d; dnnl_primitive_desc_t rnn_pd; dnnl_primitive_desc_create(&rnn_pd, &rnn_d, attr, engine, NULL);
Parameters:
attr |
Primitive attributes. |
scale |
The value to scale the data by. |
shift |
The value to shift the data by. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_get_rnn_data_qparams( const_dnnl_primitive_attr_t attr, float* scale, float* shift )
Returns the quantization scale and shift parameters for RNN data tensors.
Note
Quantization scale and shift are common for src_layer, src_iter, dst_iter, and dst_layer.
Parameters:
attr |
Primitive attributes. |
scale |
The value to scale the data by. |
shift |
The value to shift the data by. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_set_rnn_weights_qparams( dnnl_primitive_attr_t attr, dnnl_dim_t count, int mask, const float* scales )
Sets quantization scaling factors for RNN weights tensors.
The low-precision configuration of the RNN primitives expects input weights to use the signed 8-bit integer data type. The scaling factors are used to quantize floating-point data to signed integer and must be passed to RNN primitives using attributes.
Note
The dimension order is always native and does not depend on the actual layout used. For example, five-dimensional weights always have (l, d, i, g, o) logical dimension ordering.
Note
Quantization scales are common for weights_layer and weights_iteration
Parameters:
attr |
Primitive attributes. |
count |
Number of elements in the |
mask |
Scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Array of output scaling factors that must contain
\[count = \prod\limits_{d \in mask} weights.dims[d].\]
Violations can only be detected when the attributes are used to create a primitive descriptor. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_get_rnn_weights_qparams( const_dnnl_primitive_attr_t attr, dnnl_dim_t* count, int* mask, const float** scales )
Returns the quantization scaling factors for RNN weights tensors.
Parameters:
attr |
Primitive attributes. |
count |
Number of elements in the |
mask |
Scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Array of output scaling factors that contain
\[count = \prod\limits_{d \in mask} weights.dims[d].\]
|
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_set_rnn_weights_projection_qparams( dnnl_primitive_attr_t attr, dnnl_dim_t count, int mask, const float* scales )
Sets quantization scaling factors for RNN projection weights tensors.
The low-precision configuration of the RNN primitives expects input weights to use the signed 8-bit integer data type. The scaling factors are used to quantize floating-point data to signed integer and must be passed to RNN primitives using attributes.
Note
The dimension order is always native and does not depend on the actual layout used. For example, five-dimensional weights always have (l, d, i, g, o) logical dimension ordering.
Parameters:
attr |
Primitive attributes. |
count |
Number of elements in the |
mask |
Scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Array of output scaling factors that must contain
\[count = \prod\limits_{d \in mask} weights.dims[d].\]
Violations can only be detected when the attributes are used to create a primitive descriptor. |
Returns:
dnnl_success on success and a status describing the error otherwise.
dnnl_status_t DNNL_API dnnl_primitive_attr_get_rnn_weights_projection_qparams( const_dnnl_primitive_attr_t attr, dnnl_dim_t* count, int* mask, const float** scales )
Returns the quantization scaling factors for RNN projection weights tensors.
Parameters:
attr |
Primitive attributes. |
count |
Number of elements in the |
mask |
Scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the |
scales |
Array of output scaling factors that contain
\[count = \prod\limits_{d \in mask} weights.dims[d].\]
|
Returns:
dnnl_success on success and a status describing the error otherwise.