getting_started.cpp¶
This C++ API example demonstrates the basics of the oneDNN programming model. Annotated version: Getting started
This C++ API example demonstrates the basics of the oneDNN programming model. Annotated version: Getting started
/******************************************************************************* * Copyright 2019-2020 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include <cmath> #include <numeric> #include <stdexcept> #include <vector> #include "oneapi/dnnl/dnnl.hpp" #include "oneapi/dnnl/dnnl_debug.h" #include "example_utils.hpp" using namespace dnnl; // [Prologue] // [Prologue] void getting_started_tutorial(engine::kind engine_kind) { // [Initialize engine] engine eng(engine_kind, 0); // [Initialize engine] // [Initialize stream] stream engine_stream(eng); // [Initialize stream] // [Create user's data] const int N = 1, H = 13, W = 13, C = 3; // Compute physical strides for each dimension const int stride_N = H * W * C; const int stride_H = W * C; const int stride_W = C; const int stride_C = 1; // An auxiliary function that maps logical index to the physical offset auto offset = [=](int n, int h, int w, int c) { return n * stride_N + h * stride_H + w * stride_W + c * stride_C; }; // The image size const int image_size = N * H * W * C; // Allocate a buffer for the image std::vector<float> image(image_size); // Initialize the image with some values for (int n = 0; n < N; ++n) for (int h = 0; h < H; ++h) for (int w = 0; w < W; ++w) for (int c = 0; c < C; ++c) { int off = offset( n, h, w, c); // Get the physical offset of a pixel image[off] = -std::cos(off / 10.f); } // [Create user's data] // [Init src_md] auto src_md = memory::desc( {N, C, H, W}, // logical dims, the order is defined by a primitive memory::data_type::f32, // tensor's data type memory::format_tag::nhwc // memory format, NHWC in this case ); // [Init src_md] // [Init alt_src_md] auto alt_src_md = memory::desc( {N, C, H, W}, // logical dims, the order is defined by a primitive memory::data_type::f32, // tensor's data type {stride_N, stride_C, stride_H, stride_W} // the strides ); // Sanity check: the memory descriptors should be the same if (src_md != alt_src_md) throw std::logic_error("Memory descriptor initialization mismatch."); // [Init alt_src_md] // [Create memory objects] // src_mem contains a copy of image after write_to_dnnl_memory function auto src_mem = memory(src_md, eng); write_to_dnnl_memory(image.data(), src_mem); // For dst_mem the library allocates buffer auto dst_mem = memory(src_md, eng); // [Create memory objects] // [Create a ReLU primitive] // ReLU op descriptor (no engine- or implementation-specific information) auto relu_d = eltwise_forward::desc( prop_kind::forward_inference, algorithm::eltwise_relu, src_md, // the memory descriptor for an operation to work on 0.f, // alpha parameter means negative slope in case of ReLU 0.f // beta parameter is ignored in case of ReLU ); // ReLU primitive descriptor, which corresponds to a particular // implementation in the library auto relu_pd = eltwise_forward::primitive_desc(relu_d, // an operation descriptor eng // an engine the primitive will be created for ); // ReLU primitive auto relu = eltwise_forward(relu_pd); // !!! this can take quite some time // [Create a ReLU primitive] // [Execute ReLU primitive] // Execute ReLU (out-of-place) relu.execute(engine_stream, // The execution stream { // A map with all inputs and outputs {DNNL_ARG_SRC, src_mem}, // Source tag and memory obj {DNNL_ARG_DST, dst_mem}, // Destination tag and memory obj }); // Wait the stream to complete the execution engine_stream.wait(); // [Execute ReLU primitive] // [Execute ReLU primitive in-place] // Execute ReLU (in-place) // relu.execute(engine_stream, { // {DNNL_ARG_SRC, src_mem}, // {DNNL_ARG_DST, src_mem}, // }); // [Execute ReLU primitive in-place] // [Check the results] // Obtain a buffer for the `dst_mem` and cast it to `float *`. // This is safe since we created `dst_mem` as f32 tensor with known // memory format. std::vector<float> relu_image(image_size); read_from_dnnl_memory(relu_image.data(), dst_mem); /* // Check the results for (int n = 0; n < N; ++n) for (int h = 0; h < H; ++h) for (int w = 0; w < W; ++w) for (int c = 0; c < C; ++c) { int off = offset( n, h, w, c); // get the physical offset of a pixel float expected = image[off] < 0 ? 0.f : image[off]; // expected value if (relu_image[off] != expected) { std::cout << "At index(" << n << ", " << c << ", " << h << ", " << w << ") expect " << expected << " but got " << relu_image[off] << std::endl; throw std::logic_error("Accuracy check failed."); } } // [Check the results] */ } // [Main] int main(int argc, char **argv) { int exit_code = 0; engine::kind engine_kind = parse_engine_kind(argc, argv); try { getting_started_tutorial(engine_kind); } catch (dnnl::error &e) { std::cout << "oneDNN error caught: " << std::endl << "\tStatus: " << dnnl_status2str(e.status) << std::endl << "\tMessage: " << e.what() << std::endl; exit_code = 1; } catch (std::string &e) { std::cout << "Error in the example: " << e << "." << std::endl; exit_code = 2; } std::cout << "Example " << (exit_code ? "failed" : "passed") << " on " << engine_kind2str_upper(engine_kind) << "." << std::endl; return exit_code; } // [Main]