cpu_rnn_inference_int8.cpp

This C++ API example demonstrates how to build GNMT model inference. Annotated version: RNN int8 inference example

This C++ API example demonstrates how to build GNMT model inference. Annotated version: RNN int8 inference example

/*******************************************************************************
* Copyright 2018-2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/



#include <assert.h>

#include <cstring>
#include <iostream>
#include <math.h>
#include <numeric>
#include <string>

#include "oneapi/dnnl/dnnl.hpp"

#include "example_utils.hpp"

using namespace dnnl;

using dim_t = dnnl::memory::dim;

const dim_t batch = 32;
const dim_t src_seq_length_max = 10;
const dim_t tgt_seq_length_max = 10;

const dim_t feature_size = 256;

const dim_t enc_bidir_n_layers = 1;
const dim_t enc_unidir_n_layers = 3;
const dim_t dec_n_layers = 4;

const int lstm_n_gates = 4;

std::vector<int32_t> weighted_src_layer(batch *feature_size, 1);
std::vector<float> alignment_model(
        src_seq_length_max *batch *feature_size, 1.0f);
std::vector<float> alignments(src_seq_length_max *batch, 1.0f);
std::vector<float> exp_sums(batch, 1.0f);

void compute_weighted_annotations(float *weighted_annotations,
        dim_t src_seq_length_max, dim_t batch, dim_t feature_size,
        float *weights_annot, float *annotations) {
    // annotations(aka enc_dst_layer) is (t, n, 2c)
    // weights_annot is (2c, c)

    dim_t num_weighted_annotations = src_seq_length_max * batch;
    // annotation[i] = GEMM(weights_annot, enc_dst_layer[i]);
    dnnl_sgemm('N', 'N', num_weighted_annotations, feature_size, feature_size,
            1.f, annotations, feature_size, weights_annot, feature_size, 0.f,
            weighted_annotations, feature_size);
}

void compute_sum_of_rows(
        int8_t *a, dim_t rows, dim_t cols, int32_t *a_reduced) {
    PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(1)
    for (dim_t i = 0; i < cols; i++) {
        a_reduced[i] = 0;
        for (dim_t j = 0; j < rows; j++) {
            a_reduced[i] += (int32_t)a[i * rows + j];
        }
    }
}

void compute_attention(float *context_vectors, dim_t src_seq_length_max,
        dim_t batch, dim_t feature_size, int8_t *weights_src_layer,
        float weights_src_layer_scale, int32_t *compensation,
        uint8_t *dec_src_layer, float dec_src_layer_scale,
        float dec_src_layer_shift, uint8_t *annotations,
        float *weighted_annotations, float *weights_alignments) {
    // dst_iter : (n, c) matrix
    // src_layer: (n, c) matrix
    // weighted_annotations (t, n, c)

    // weights_yi is (c, c)
    // weights_ai is (c, 1)
    // tmp[i] is (n, c)
    // a[i] is (n, 1)
    // p is (n, 1)

    // first we precompute the weighted_dec_src_layer
    int32_t co = 0;
    dnnl_gemm_u8s8s32('N', 'N', 'F', batch, feature_size, feature_size, 1.f,
            dec_src_layer, feature_size, 0, weights_src_layer, feature_size, 0,
            0.f, weighted_src_layer.data(), feature_size, &co);

    // then we compute the alignment model
    float *alignment_model_ptr = alignment_model.data();
    PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(2)
    for (dim_t i = 0; i < src_seq_length_max; i++) {
        for (dim_t j = 0; j < batch; j++) {
            for (dim_t k = 0; k < feature_size; k++) {
                size_t tnc_offset
                        = i * batch * feature_size + j * feature_size + k;
                alignment_model_ptr[tnc_offset]
                        = tanhf((float)(weighted_src_layer[j * feature_size + k]
                                        - dec_src_layer_shift * compensation[k])
                                        / (dec_src_layer_scale
                                                * weights_src_layer_scale)
                                + weighted_annotations[tnc_offset]);
            }
        }
    }

    // gemv with alignments weights. the resulting alignments are in alignments
    dim_t num_weighted_annotations = src_seq_length_max * batch;
    dnnl_sgemm('N', 'N', num_weighted_annotations, 1, feature_size, 1.f,
            alignment_model_ptr, feature_size, weights_alignments, 1, 0.f,
            alignments.data(), 1);

    // softmax on alignments. the resulting context weights are in alignments
    PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(1)
    for (dim_t i = 0; i < batch; i++)
        exp_sums[i] = 0.0f;

    // For each batch j, in the expression: exp(A_i) / \sum_i exp(A_i)
    // we calculate max_idx t so that A_i <= A_t and calculate the expression as
    //         exp(A_i - A_t) / \sum_i exp(A_i - A_t)
    // which mitigates the overflow errors
    std::vector<dim_t> max_idx(batch, 0);
    PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(1)
    for (dim_t j = 0; j < batch; j++) {
        for (dim_t i = 1; i < src_seq_length_max; i++) {
            if (alignments[i * batch + j] > alignments[(i - 1) * batch + j])
                max_idx[j] = i;
        }
    }

    PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(1)
    for (dim_t j = 0; j < batch; j++) {
        auto max_idx_val = alignments[max_idx[j] * batch + j];
        for (dim_t i = 0; i < src_seq_length_max; i++) {
            alignments[i * batch + j] -= max_idx_val;
            alignments[i * batch + j] = expf(alignments[i * batch + j]);
            exp_sums[j] += alignments[i * batch + j];
        }
    }

    PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(2)
    for (dim_t i = 0; i < src_seq_length_max; i++)
        for (dim_t j = 0; j < batch; j++)
            alignments[i * batch + j] /= exp_sums[j];

    // then we compute the context vectors
    PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(2)
    for (dim_t i = 0; i < batch; i++)
        for (dim_t j = 0; j < feature_size; j++)
            context_vectors[i * (feature_size + feature_size) + feature_size
                    + j]
                    = 0.0f;

    PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(2)
    for (dim_t i = 0; i < batch; i++)
        for (dim_t j = 0; j < feature_size; j++)
            for (dim_t k = 0; k < src_seq_length_max; k++)
                context_vectors[i * (feature_size + feature_size) + feature_size
                        + j]
                        += alignments[k * batch + i]
                        * (((float)annotations[j
                                    + feature_size * (i + batch * k)]
                                   - dec_src_layer_shift)
                                / dec_src_layer_scale);
}

void copy_context(
        float *src_iter, dim_t n_layers, dim_t batch, dim_t feature_size) {
    // we copy the context from the first layer to all other layers
    PRAGMA_OMP_PARALLEL_FOR_COLLAPSE(3)
    for (dim_t k = 1; k < n_layers; k++)
        for (dim_t j = 0; j < batch; j++)
            for (dim_t i = 0; i < feature_size; i++)
                src_iter[(k * batch + j) * (feature_size + feature_size)
                        + feature_size + i]
                        = src_iter[j * (feature_size + feature_size)
                                + feature_size + i];
}

void simple_net() {
    //[Initialize engine and stream]
    auto cpu_engine = engine(engine::kind::cpu, 0);
    stream s(cpu_engine);
    //[Initialize engine and stream]

    //[declare net]
    std::vector<primitive> encoder_net, decoder_net;
    std::vector<std::unordered_map<int, memory>> encoder_net_args,
            decoder_net_args;

    std::vector<float> net_src(batch * src_seq_length_max * feature_size, 0.1f);
    std::vector<float> net_dst(batch * tgt_seq_length_max * feature_size, 0.1f);
    //[declare net]

    // Quantization factors for f32 data

    const float data_shift = 64.;
    const float data_scale = 63.;
    const int weights_scale_mask = 0
            + (1 << 3) // bit, indicating the unique scales for `g` dim in `ldigo`
            + (1 << 4); // bit, indicating the unique scales for `o` dim in `ldigo`
    //[quantize]
    std::vector<float> weights_scales(lstm_n_gates * feature_size);
    // assign halves of vector with arbitrary values
    const dim_t scales_half = lstm_n_gates * feature_size / 2;
    std::fill(
            weights_scales.begin(), weights_scales.begin() + scales_half, 30.f);
    std::fill(
            weights_scales.begin() + scales_half, weights_scales.end(), 65.5f);
    //[quantize]

    //[Initialize encoder memory]
    memory::dims enc_bidir_src_layer_tz
            = {src_seq_length_max, batch, feature_size};
    memory::dims enc_bidir_weights_layer_tz
            = {enc_bidir_n_layers, 2, feature_size, lstm_n_gates, feature_size};
    memory::dims enc_bidir_weights_iter_tz
            = {enc_bidir_n_layers, 2, feature_size, lstm_n_gates, feature_size};
    memory::dims enc_bidir_bias_tz
            = {enc_bidir_n_layers, 2, lstm_n_gates, feature_size};
    memory::dims enc_bidir_dst_layer_tz
            = {src_seq_length_max, batch, 2 * feature_size};

    //[Initialize encoder memory]


    std::vector<float> user_enc_bidir_wei_layer(
            enc_bidir_n_layers * 2 * feature_size * lstm_n_gates * feature_size,
            0.3f);
    std::vector<float> user_enc_bidir_wei_iter(
            enc_bidir_n_layers * 2 * feature_size * lstm_n_gates * feature_size,
            0.2f);
    std::vector<float> user_enc_bidir_bias(
            enc_bidir_n_layers * 2 * lstm_n_gates * feature_size, 1.0f);

    //[data memory creation]
    auto user_enc_bidir_src_layer_md = memory::desc({enc_bidir_src_layer_tz},
            memory::data_type::f32, memory::format_tag::tnc);

    auto user_enc_bidir_wei_layer_md
            = memory::desc({enc_bidir_weights_layer_tz}, memory::data_type::f32,
                    memory::format_tag::ldigo);

    auto user_enc_bidir_wei_iter_md = memory::desc({enc_bidir_weights_iter_tz},
            memory::data_type::f32, memory::format_tag::ldigo);

    auto user_enc_bidir_bias_md = memory::desc({enc_bidir_bias_tz},
            memory::data_type::f32, memory::format_tag::ldgo);

    auto user_enc_bidir_src_layer_memory
            = memory(user_enc_bidir_src_layer_md, cpu_engine, net_src.data());
    auto user_enc_bidir_wei_layer_memory = memory(user_enc_bidir_wei_layer_md,
            cpu_engine, user_enc_bidir_wei_layer.data());
    auto user_enc_bidir_wei_iter_memory = memory(user_enc_bidir_wei_iter_md,
            cpu_engine, user_enc_bidir_wei_iter.data());
    auto user_enc_bidir_bias_memory = memory(
            user_enc_bidir_bias_md, cpu_engine, user_enc_bidir_bias.data());
    //[data memory creation]

    //[memory desc for RNN data]
    auto enc_bidir_src_layer_md = memory::desc({enc_bidir_src_layer_tz},
            memory::data_type::u8, memory::format_tag::any);

    auto enc_bidir_wei_layer_md = memory::desc({enc_bidir_weights_layer_tz},
            memory::data_type::s8, memory::format_tag::any);

    auto enc_bidir_wei_iter_md = memory::desc({enc_bidir_weights_iter_tz},
            memory::data_type::s8, memory::format_tag::any);

    auto enc_bidir_dst_layer_md = memory::desc({enc_bidir_dst_layer_tz},
            memory::data_type::u8, memory::format_tag::any);
    //[memory desc for RNN data]


    //[create rnn desc]
    lstm_forward::desc bi_layer_desc(prop_kind::forward_inference,
            rnn_direction::bidirectional_concat, enc_bidir_src_layer_md,
            memory::desc(), memory::desc(), enc_bidir_wei_layer_md,
            enc_bidir_wei_iter_md, user_enc_bidir_bias_md,
            enc_bidir_dst_layer_md, memory::desc(), memory::desc());
    //[create rnn desc]

    //[RNN attri]
    primitive_attr attr;
    attr.set_rnn_data_qparams(data_scale, data_shift);
    attr.set_rnn_weights_qparams(weights_scale_mask, weights_scales);

    // check if int8 LSTM is supported
    lstm_forward::primitive_desc enc_bidir_prim_desc;
    try {
        enc_bidir_prim_desc
                = lstm_forward::primitive_desc(bi_layer_desc, attr, cpu_engine);
    } catch (error &e) {
        if (e.status == dnnl_unimplemented)
            throw example_allows_unimplemented {
                    "No int8 LSTM implementation is available for this "
                    "platform.\n"
                    "Please refer to the developer guide for details."};

        // on any other error just re-throw
        throw;
    }

    //[RNN attri]

    //[reorder input data]
    auto enc_bidir_src_layer_memory
            = memory(enc_bidir_prim_desc.src_layer_desc(), cpu_engine);
    auto enc_bidir_src_layer_reorder_pd = reorder::primitive_desc(
            user_enc_bidir_src_layer_memory, enc_bidir_src_layer_memory, attr);
    encoder_net.push_back(reorder(enc_bidir_src_layer_reorder_pd));
    encoder_net_args.push_back(
            {{DNNL_ARG_FROM, user_enc_bidir_src_layer_memory},
                    {DNNL_ARG_TO, enc_bidir_src_layer_memory}});
    //[reorder input data]

    auto enc_bidir_wei_layer_memory
            = memory(enc_bidir_prim_desc.weights_layer_desc(), cpu_engine);
    auto enc_bidir_wei_layer_reorder_pd = reorder::primitive_desc(
            user_enc_bidir_wei_layer_memory, enc_bidir_wei_layer_memory, attr);
    reorder(enc_bidir_wei_layer_reorder_pd)
            .execute(s, user_enc_bidir_wei_layer_memory,
                    enc_bidir_wei_layer_memory);

    auto enc_bidir_wei_iter_memory
            = memory(enc_bidir_prim_desc.weights_iter_desc(), cpu_engine);
    auto enc_bidir_wei_iter_reorder_pd = reorder::primitive_desc(
            user_enc_bidir_wei_iter_memory, enc_bidir_wei_iter_memory, attr);
    reorder(enc_bidir_wei_iter_reorder_pd)
            .execute(s, user_enc_bidir_wei_iter_memory,
                    enc_bidir_wei_iter_memory);

    auto enc_bidir_dst_layer_memory
            = memory(enc_bidir_prim_desc.dst_layer_desc(), cpu_engine);

    //[push bi rnn to encoder net]
    encoder_net.push_back(lstm_forward(enc_bidir_prim_desc));
    encoder_net_args.push_back(
            {{DNNL_ARG_SRC_LAYER, enc_bidir_src_layer_memory},
                    {DNNL_ARG_WEIGHTS_LAYER, enc_bidir_wei_layer_memory},
                    {DNNL_ARG_WEIGHTS_ITER, enc_bidir_wei_iter_memory},
                    {DNNL_ARG_BIAS, user_enc_bidir_bias_memory},
                    {DNNL_ARG_DST_LAYER, enc_bidir_dst_layer_memory}});
    //[push bi rnn to encoder net]

    //[first uni layer]
    std::vector<float> user_enc_uni_first_wei_layer(
            1 * 1 * 2 * feature_size * lstm_n_gates * feature_size, 0.3f);
    std::vector<float> user_enc_uni_first_wei_iter(
            1 * 1 * feature_size * lstm_n_gates * feature_size, 0.2f);
    std::vector<float> user_enc_uni_first_bias(
            1 * 1 * lstm_n_gates * feature_size, 1.0f);
    //[first uni layer]

    memory::dims user_enc_uni_first_wei_layer_dims
            = {1, 1, 2 * feature_size, lstm_n_gates, feature_size};
    memory::dims user_enc_uni_first_wei_iter_dims
            = {1, 1, feature_size, lstm_n_gates, feature_size};
    memory::dims user_enc_uni_first_bias_dims
            = {1, 1, lstm_n_gates, feature_size};
    memory::dims enc_uni_first_dst_layer_dims
            = {src_seq_length_max, batch, feature_size};

    auto user_enc_uni_first_wei_layer_md
            = memory::desc({user_enc_uni_first_wei_layer_dims},
                    memory::data_type::f32, memory::format_tag::ldigo);
    auto user_enc_uni_first_wei_iter_md
            = memory::desc({user_enc_uni_first_wei_iter_dims},
                    memory::data_type::f32, memory::format_tag::ldigo);
    auto user_enc_uni_first_bias_md
            = memory::desc({user_enc_uni_first_bias_dims},
                    memory::data_type::f32, memory::format_tag::ldgo);
    auto user_enc_uni_first_wei_layer_memory
            = memory(user_enc_uni_first_wei_layer_md, cpu_engine,
                    user_enc_uni_first_wei_layer.data());
    auto user_enc_uni_first_wei_iter_memory
            = memory(user_enc_uni_first_wei_iter_md, cpu_engine,
                    user_enc_uni_first_wei_iter.data());
    auto user_enc_uni_first_bias_memory = memory(user_enc_uni_first_bias_md,
            cpu_engine, user_enc_uni_first_bias.data());

    auto enc_uni_first_wei_layer_md
            = memory::desc({user_enc_uni_first_wei_layer_dims},
                    memory::data_type::s8, memory::format_tag::any);
    auto enc_uni_first_wei_iter_md
            = memory::desc({user_enc_uni_first_wei_iter_dims},
                    memory::data_type::s8, memory::format_tag::any);
    auto enc_uni_first_dst_layer_md
            = memory::desc({enc_uni_first_dst_layer_dims},
                    memory::data_type::u8, memory::format_tag::any);

    //[create uni first]

    lstm_forward::desc enc_uni_first_layer_desc(prop_kind::forward_inference,
            rnn_direction::unidirectional_left2right, enc_bidir_dst_layer_md,
            memory::desc(), memory::desc(), enc_uni_first_wei_layer_md,
            enc_uni_first_wei_iter_md, user_enc_uni_first_bias_md,
            enc_uni_first_dst_layer_md, memory::desc(), memory::desc());

    auto enc_uni_first_prim_desc = lstm_forward::primitive_desc(
            enc_uni_first_layer_desc, attr, cpu_engine);
    //[create uni first]

    auto enc_uni_first_wei_layer_memory
            = memory(enc_uni_first_prim_desc.weights_layer_desc(), cpu_engine);
    reorder(user_enc_uni_first_wei_layer_memory, enc_uni_first_wei_layer_memory)
            .execute(s, user_enc_uni_first_wei_layer_memory,
                    enc_uni_first_wei_layer_memory);

    auto enc_uni_first_wei_iter_memory
            = memory(enc_uni_first_prim_desc.weights_iter_desc(), cpu_engine);
    reorder(user_enc_uni_first_wei_iter_memory, enc_uni_first_wei_iter_memory)
            .execute(s, user_enc_uni_first_wei_iter_memory,
                    enc_uni_first_wei_iter_memory);

    auto enc_uni_first_dst_layer_memory
            = memory(enc_uni_first_prim_desc.dst_layer_desc(), cpu_engine);

    //[push first uni rnn to encoder net]
    encoder_net.push_back(lstm_forward(enc_uni_first_prim_desc));
    encoder_net_args.push_back(
            {{DNNL_ARG_SRC_LAYER, enc_bidir_dst_layer_memory},
                    {DNNL_ARG_WEIGHTS_LAYER, enc_uni_first_wei_layer_memory},
                    {DNNL_ARG_WEIGHTS_ITER, enc_uni_first_wei_iter_memory},
                    {DNNL_ARG_BIAS, user_enc_uni_first_bias_memory},
                    {DNNL_ARG_DST_LAYER, enc_uni_first_dst_layer_memory}});
    //[push first uni rnn to encoder net]

    //[remaining uni layers]
    std::vector<float> user_enc_uni_wei_layer((enc_unidir_n_layers - 1) * 1
                    * feature_size * lstm_n_gates * feature_size,
            0.3f);
    std::vector<float> user_enc_uni_wei_iter((enc_unidir_n_layers - 1) * 1
                    * feature_size * lstm_n_gates * feature_size,
            0.2f);
    std::vector<float> user_enc_uni_bias(
            (enc_unidir_n_layers - 1) * 1 * lstm_n_gates * feature_size, 1.0f);
    //[remaining uni layers]

    memory::dims user_enc_uni_wei_layer_dims = {(enc_unidir_n_layers - 1), 1,
            feature_size, lstm_n_gates, feature_size};
    memory::dims user_enc_uni_wei_iter_dims = {(enc_unidir_n_layers - 1), 1,
            feature_size, lstm_n_gates, feature_size};
    memory::dims user_enc_uni_bias_dims
            = {(enc_unidir_n_layers - 1), 1, lstm_n_gates, feature_size};
    memory::dims enc_dst_layer_dims = {src_seq_length_max, batch, feature_size};

    auto user_enc_uni_wei_layer_md = memory::desc({user_enc_uni_wei_layer_dims},
            memory::data_type::f32, memory::format_tag::ldigo);
    auto user_enc_uni_wei_iter_md = memory::desc({user_enc_uni_wei_iter_dims},
            memory::data_type::f32, memory::format_tag::ldigo);
    auto user_enc_uni_bias_md = memory::desc({user_enc_uni_bias_dims},
            memory::data_type::f32, memory::format_tag::ldgo);

    auto user_enc_uni_wei_layer_memory = memory(user_enc_uni_wei_layer_md,
            cpu_engine, user_enc_uni_wei_layer.data());
    auto user_enc_uni_wei_iter_memory = memory(
            user_enc_uni_wei_iter_md, cpu_engine, user_enc_uni_wei_iter.data());
    auto user_enc_uni_bias_memory = memory(
            user_enc_uni_bias_md, cpu_engine, user_enc_uni_bias.data());

    auto enc_uni_wei_layer_md = memory::desc({user_enc_uni_wei_layer_dims},
            memory::data_type::s8, memory::format_tag::any);
    auto enc_uni_wei_iter_md = memory::desc({user_enc_uni_wei_iter_dims},
            memory::data_type::s8, memory::format_tag::any);
    auto enc_dst_layer_md = memory::desc({enc_dst_layer_dims},
            memory::data_type::f32, memory::format_tag::any);

    //[create uni rnn]

    lstm_forward::desc enc_uni_layer_desc(prop_kind::forward_inference,
            rnn_direction::unidirectional_left2right,
            enc_uni_first_dst_layer_md, memory::desc(), memory::desc(),
            enc_uni_wei_layer_md, enc_uni_wei_iter_md, user_enc_uni_bias_md,
            enc_dst_layer_md, memory::desc(), memory::desc());
    auto enc_uni_prim_desc = lstm_forward::primitive_desc(
            enc_uni_layer_desc, attr, cpu_engine);
    //[create uni rnn]

    auto enc_uni_wei_layer_memory
            = memory(enc_uni_prim_desc.weights_layer_desc(), cpu_engine);
    auto enc_uni_wei_layer_reorder_pd = reorder::primitive_desc(
            user_enc_uni_wei_layer_memory, enc_uni_wei_layer_memory, attr);
    reorder(enc_uni_wei_layer_reorder_pd)
            .execute(
                    s, user_enc_uni_wei_layer_memory, enc_uni_wei_layer_memory);

    auto enc_uni_wei_iter_memory
            = memory(enc_uni_prim_desc.weights_iter_desc(), cpu_engine);
    auto enc_uni_wei_iter_reorder_pd = reorder::primitive_desc(
            user_enc_uni_wei_iter_memory, enc_uni_wei_iter_memory, attr);
    reorder(enc_uni_wei_iter_reorder_pd)
            .execute(s, user_enc_uni_wei_iter_memory, enc_uni_wei_iter_memory);

    auto enc_dst_layer_memory
            = memory(enc_uni_prim_desc.dst_layer_desc(), cpu_engine);

    //[push uni rnn to encoder net]
    encoder_net.push_back(lstm_forward(enc_uni_prim_desc));
    encoder_net_args.push_back(
            {{DNNL_ARG_SRC_LAYER, enc_uni_first_dst_layer_memory},
                    {DNNL_ARG_WEIGHTS_LAYER, enc_uni_wei_layer_memory},
                    {DNNL_ARG_WEIGHTS_ITER, enc_uni_wei_iter_memory},
                    {DNNL_ARG_BIAS, user_enc_uni_bias_memory},
                    {DNNL_ARG_DST_LAYER, enc_dst_layer_memory}});
    //[push uni rnn to encoder net]

    //[dec mem dim]
    std::vector<float> user_dec_wei_layer(
            dec_n_layers * 1 * feature_size * lstm_n_gates * feature_size,
            0.2f);
    std::vector<float> user_dec_wei_iter(dec_n_layers * 1
                    * (feature_size + feature_size) * lstm_n_gates
                    * feature_size,
            0.3f);
    std::vector<float> user_dec_bias(
            dec_n_layers * 1 * lstm_n_gates * feature_size, 1.0f);
    std::vector<int8_t> user_weights_attention_src_layer(
            feature_size * feature_size, 1);
    float weights_attention_scale = 127.;
    std::vector<float> user_weights_annotation(
            feature_size * feature_size, 1.0f);
    std::vector<float> user_weights_alignments(feature_size, 1.0f);
    // Buffer to store decoder output for all iterations
    std::vector<uint8_t> dec_dst(tgt_seq_length_max * batch * feature_size, 0);

    memory::dims user_dec_wei_layer_dims
            = {dec_n_layers, 1, feature_size, lstm_n_gates, feature_size};
    memory::dims user_dec_wei_iter_dims = {dec_n_layers, 1,
            feature_size + feature_size, lstm_n_gates, feature_size};
    memory::dims user_dec_bias_dims
            = {dec_n_layers, 1, lstm_n_gates, feature_size};
    memory::dims dec_src_layer_dims = {1, batch, feature_size};
    memory::dims dec_dst_layer_dims = {1, batch, feature_size};
    memory::dims dec_dst_iter_c_dims = {dec_n_layers, 1, batch, feature_size};
    //[dec mem dim]

    // We will use the same memory for dec_src_iter and dec_dst_iter
    // However, dec_src_iter has a context vector but not
    // dec_dst_iter.
    // To resolve this we will create one memory that holds the
    // context vector as well as the both the hidden and cell states.
    // For the dst_iter, we will use a view on this memory.
    // Note that the cell state will be padded by
    // feature_size values. However, we do not compute or
    // access those.
    //[noctx mem dim]
    std::vector<float> dec_dst_iter(
            dec_n_layers * batch * 2 * feature_size, 1.0f);

    memory::dims dec_dst_iter_dims
            = {dec_n_layers, 1, batch, feature_size + feature_size};
    memory::dims dec_dst_iter_noctx_dims
            = {dec_n_layers, 1, batch, feature_size};
    //[noctx mem dim]

    //[dec mem desc]
    auto user_dec_wei_layer_md = memory::desc({user_dec_wei_layer_dims},
            memory::data_type::f32, memory::format_tag::ldigo);
    auto user_dec_wei_iter_md = memory::desc({user_dec_wei_iter_dims},
            memory::data_type::f32, memory::format_tag::ldigo);
    auto user_dec_bias_md = memory::desc({user_dec_bias_dims},
            memory::data_type::f32, memory::format_tag::ldgo);
    auto dec_src_layer_md = memory::desc({dec_src_layer_dims},
            memory::data_type::u8, memory::format_tag::tnc);
    auto dec_dst_layer_md = memory::desc({dec_dst_layer_dims},
            memory::data_type::u8, memory::format_tag::tnc);
    auto dec_dst_iter_md = memory::desc({dec_dst_iter_dims},
            memory::data_type::f32, memory::format_tag::ldnc);
    auto dec_dst_iter_c_md = memory::desc({dec_dst_iter_c_dims},
            memory::data_type::f32, memory::format_tag::ldnc);
    //[dec mem desc]

    //[create dec memory]
    auto user_dec_wei_layer_memory = memory(
            user_dec_wei_layer_md, cpu_engine, user_dec_wei_layer.data());
    auto user_dec_wei_iter_memory = memory(
            user_dec_wei_iter_md, cpu_engine, user_dec_wei_iter.data());
    auto user_dec_bias_memory
            = memory(user_dec_bias_md, cpu_engine, user_dec_bias.data());
    auto dec_src_layer_memory = memory(dec_src_layer_md, cpu_engine);
    auto dec_dst_layer_memory
            = memory(dec_dst_layer_md, cpu_engine, dec_dst.data());
    auto dec_dst_iter_c_memory = memory(dec_dst_iter_c_md, cpu_engine);
    //[create dec memory]

    // Create memory descriptors for RNN data w/o specified layout
    auto dec_wei_layer_md = memory::desc({user_dec_wei_layer_dims},
            memory::data_type::s8, memory::format_tag::any);
    auto dec_wei_iter_md = memory::desc({user_dec_wei_iter_dims},
            memory::data_type::s8, memory::format_tag::any);

    //[create noctx mem]
    auto dec_dst_iter_memory
            = memory(dec_dst_iter_md, cpu_engine, dec_dst_iter.data());
    auto dec_dst_iter_noctx_md = dec_dst_iter_md.submemory_desc(
            dec_dst_iter_noctx_dims, {0, 0, 0, 0, 0});
    //[create noctx mem]

    lstm_forward::desc dec_ctx_desc(prop_kind::forward_inference,
            rnn_direction::unidirectional_left2right, dec_src_layer_md,
            dec_dst_iter_md, dec_dst_iter_c_md, dec_wei_layer_md,
            dec_wei_iter_md, user_dec_bias_md, dec_dst_layer_md,
            dec_dst_iter_noctx_md, dec_dst_iter_c_md);
    auto dec_ctx_prim_desc
            = lstm_forward::primitive_desc(dec_ctx_desc, attr, cpu_engine);

    //[dec reorder]
    auto dec_wei_layer_memory
            = memory(dec_ctx_prim_desc.weights_layer_desc(), cpu_engine);
    auto dec_wei_layer_reorder_pd = reorder::primitive_desc(
            user_dec_wei_layer_memory, dec_wei_layer_memory, attr);
    reorder(dec_wei_layer_reorder_pd)
            .execute(s, user_dec_wei_layer_memory, dec_wei_layer_memory);
    //[dec reorder]

    auto dec_wei_iter_memory
            = memory(dec_ctx_prim_desc.weights_iter_desc(), cpu_engine);
    auto dec_wei_iter_reorder_pd = reorder::primitive_desc(
            user_dec_wei_iter_memory, dec_wei_iter_memory, attr);
    reorder(dec_wei_iter_reorder_pd)
            .execute(s, user_dec_wei_iter_memory, dec_wei_iter_memory);

    decoder_net.push_back(lstm_forward(dec_ctx_prim_desc));
    decoder_net_args.push_back({{DNNL_ARG_SRC_LAYER, dec_src_layer_memory},
            {DNNL_ARG_SRC_ITER, dec_dst_iter_memory},
            {DNNL_ARG_SRC_ITER_C, dec_dst_iter_c_memory},
            {DNNL_ARG_WEIGHTS_LAYER, dec_wei_layer_memory},
            {DNNL_ARG_WEIGHTS_ITER, dec_wei_iter_memory},
            {DNNL_ARG_BIAS, user_dec_bias_memory},
            {DNNL_ARG_DST_LAYER, dec_dst_layer_memory},
            {DNNL_ARG_DST_ITER, dec_dst_iter_memory},
            {DNNL_ARG_DST_ITER_C, dec_dst_iter_c_memory}});

    // Allocating temporary buffers for attention mechanism
    std::vector<float> weighted_annotations(
            src_seq_length_max * batch * feature_size, 1.0f);
    std::vector<int32_t> weights_attention_sum_rows(feature_size, 1);


    auto execute = [&]() {
        assert(encoder_net.size() == encoder_net_args.size()
                && "something is missing");
        //[run enc]
        for (size_t p = 0; p < encoder_net.size(); ++p)
            encoder_net.at(p).execute(s, encoder_net_args.at(p));
        //[run enc]

        // compute the weighted annotations once before the decoder
        //[weight ano]
        compute_weighted_annotations(weighted_annotations.data(),
                src_seq_length_max, batch, feature_size,
                user_weights_annotation.data(),
                (float *)enc_dst_layer_memory.get_data_handle());
        //[weight ano]
        //[s8u8s32]
        compute_sum_of_rows(user_weights_attention_src_layer.data(),
                feature_size, feature_size, weights_attention_sum_rows.data());
        //[s8u8s32]

        //[init src_layer]
        memset(dec_src_layer_memory.get_data_handle(), 0,
                dec_src_layer_memory.get_desc().get_size());
        //[init src_layer]

        for (dim_t i = 0; i < tgt_seq_length_max; i++) {
            uint8_t *src_att_layer_handle
                    = (uint8_t *)dec_src_layer_memory.get_data_handle();
            float *src_att_iter_handle
                    = (float *)dec_dst_iter_memory.get_data_handle();

            //[att ctx]
            compute_attention(src_att_iter_handle, src_seq_length_max, batch,
                    feature_size, user_weights_attention_src_layer.data(),
                    weights_attention_scale, weights_attention_sum_rows.data(),
                    src_att_layer_handle, data_scale, data_shift,
                    (uint8_t *)enc_bidir_dst_layer_memory.get_data_handle(),
                    weighted_annotations.data(),
                    user_weights_alignments.data());
            //[att ctx]

            //[cp ctx]
            copy_context(
                    src_att_iter_handle, dec_n_layers, batch, feature_size);
            //[cp ctx]

            assert(decoder_net.size() == decoder_net_args.size()
                    && "something is missing");
            //[run dec iter]
            for (size_t p = 0; p < decoder_net.size(); ++p)
                decoder_net.at(p).execute(s, decoder_net_args.at(p));
            //[run dec iter]

            //[set handle]
            auto dst_layer_handle
                    = (uint8_t *)dec_dst_layer_memory.get_data_handle();
            dec_src_layer_memory.set_data_handle(dst_layer_handle);
            dec_dst_layer_memory.set_data_handle(
                    dst_layer_handle + batch * feature_size);
            //[set handle]
        }
    };

    std::cout << "Parameters:" << std::endl
              << " batch = " << batch << std::endl
              << " feature size = " << feature_size << std::endl
              << " maximum source sequence length = " << src_seq_length_max
              << std::endl
              << " maximum target sequence length = " << tgt_seq_length_max
              << std::endl
              << " number of layers of the bidirectional encoder = "
              << enc_bidir_n_layers << std::endl
              << " number of layers of the unidirectional encoder = "
              << enc_unidir_n_layers << std::endl
              << " number of layers of the decoder = " << dec_n_layers
              << std::endl;

    execute();
    s.wait();
}

int main(int argc, char **argv) {
    return handle_example_errors({engine::kind::cpu}, simple_net);
}