cnn_inference_int8.cpp¶
This C++ API example demonstrates how to run AlexNet’s conv3 and relu3 with int8 data type. Annotated version: CNN int8 inference example
This C++ API example demonstrates how to run AlexNet’s conv3 and relu3 with int8 data type. Annotated version: CNN int8 inference example
/******************************************************************************* * Copyright 2018-2020 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include <stdexcept> #include "oneapi/dnnl/dnnl.hpp" #include "example_utils.hpp" using namespace dnnl; void simple_net_int8(engine::kind engine_kind) { using tag = memory::format_tag; using dt = memory::data_type; auto eng = engine(engine_kind, 0); stream s(eng); const int batch = 8; //[Configure tensor shapes] // AlexNet: conv3 // {batch, 256, 13, 13} (x) {384, 256, 3, 3}; -> {batch, 384, 13, 13} // strides: {1, 1} memory::dims conv_src_tz = {batch, 256, 13, 13}; memory::dims conv_weights_tz = {384, 256, 3, 3}; memory::dims conv_bias_tz = {384}; memory::dims conv_dst_tz = {batch, 384, 13, 13}; memory::dims conv_strides = {1, 1}; memory::dims conv_padding = {1, 1}; //[Configure tensor shapes] //[Choose scaling factors] // Choose scaling factors for input, weight, output and bias quantization const std::vector<float> src_scales = {1.8f}; const std::vector<float> weight_scales = {2.0f}; const std::vector<float> bias_scales = {1.0f}; const std::vector<float> dst_scales = {0.55f}; // Choose channel-wise scaling factors for convolution std::vector<float> conv_scales(384); const int scales_half = 384 / 2; std::fill(conv_scales.begin(), conv_scales.begin() + scales_half, 0.3f); std::fill(conv_scales.begin() + scales_half + 1, conv_scales.end(), 0.8f); //[Choose scaling factors] //[Set scaling mask] const int src_mask = 0; const int weight_mask = 0; const int bias_mask = 0; const int dst_mask = 0; const int conv_mask = 2; // 1 << output_channel_dim //[Set scaling mask] // Allocate input and output buffers for user data std::vector<float> user_src(batch * 256 * 13 * 13); std::vector<float> user_dst(batch * 384 * 13 * 13); // Allocate and fill buffers for weights and bias std::vector<float> conv_weights(product(conv_weights_tz)); std::vector<float> conv_bias(product(conv_bias_tz)); //[Allocate buffers] auto user_src_memory = memory({{conv_src_tz}, dt::f32, tag::nchw}, eng); write_to_dnnl_memory(user_src.data(), user_src_memory); auto user_weights_memory = memory({{conv_weights_tz}, dt::f32, tag::oihw}, eng); write_to_dnnl_memory(conv_weights.data(), user_weights_memory); auto user_bias_memory = memory({{conv_bias_tz}, dt::f32, tag::x}, eng); write_to_dnnl_memory(conv_bias.data(), user_bias_memory); //[Allocate buffers] //[Create convolution memory descriptors] auto conv_src_md = memory::desc({conv_src_tz}, dt::u8, tag::any); auto conv_bias_md = memory::desc({conv_bias_tz}, dt::s8, tag::any); auto conv_weights_md = memory::desc({conv_weights_tz}, dt::s8, tag::any); auto conv_dst_md = memory::desc({conv_dst_tz}, dt::u8, tag::any); //[Create convolution memory descriptors] //[Create convolution descriptor] auto conv_desc = convolution_forward::desc(prop_kind::forward, algorithm::convolution_direct, conv_src_md, conv_weights_md, conv_bias_md, conv_dst_md, conv_strides, conv_padding, conv_padding); //[Create convolution descriptor] //[Configure scaling] primitive_attr conv_attr; conv_attr.set_output_scales(conv_mask, conv_scales); //[Configure scaling] //[Configure post-ops] const float ops_scale = 1.f; const float ops_alpha = 0.f; // relu negative slope const float ops_beta = 0.f; post_ops ops; ops.append_eltwise(ops_scale, algorithm::eltwise_relu, ops_alpha, ops_beta); conv_attr.set_post_ops(ops); //[Configure post-ops] // check if int8 convolution is supported try { convolution_forward::primitive_desc(conv_desc, conv_attr, eng); } catch (error &e) { if (e.status == dnnl_unimplemented) throw example_allows_unimplemented { "No int8 convolution implementation is available for this " "platform.\n" "Please refer to the developer guide for details."}; // on any other error just re-throw throw; } //[Create convolution primitive descriptor] auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, conv_attr, eng); //[Create convolution primitive descriptor] //[Quantize data and weights] auto conv_src_memory = memory(conv_prim_desc.src_desc(), eng); primitive_attr src_attr; src_attr.set_output_scales(src_mask, src_scales); auto src_reorder_pd = reorder::primitive_desc(eng, user_src_memory.get_desc(), eng, conv_src_memory.get_desc(), src_attr); auto src_reorder = reorder(src_reorder_pd); src_reorder.execute(s, user_src_memory, conv_src_memory); auto conv_weights_memory = memory(conv_prim_desc.weights_desc(), eng); primitive_attr weight_attr; weight_attr.set_output_scales(weight_mask, weight_scales); auto weight_reorder_pd = reorder::primitive_desc(eng, user_weights_memory.get_desc(), eng, conv_weights_memory.get_desc(), weight_attr); auto weight_reorder = reorder(weight_reorder_pd); weight_reorder.execute(s, user_weights_memory, conv_weights_memory); auto conv_bias_memory = memory(conv_prim_desc.bias_desc(), eng); primitive_attr bias_attr; bias_attr.set_output_scales(bias_mask, bias_scales); auto bias_reorder_pd = reorder::primitive_desc(eng, user_bias_memory.get_desc(), eng, conv_bias_memory.get_desc(), bias_attr); auto bias_reorder = reorder(bias_reorder_pd); bias_reorder.execute(s, user_bias_memory, conv_bias_memory); //[Quantize data and weights] auto conv_dst_memory = memory(conv_prim_desc.dst_desc(), eng); //[Create convolution primitive] auto conv = convolution_forward(conv_prim_desc); conv.execute(s, {{DNNL_ARG_SRC, conv_src_memory}, {DNNL_ARG_WEIGHTS, conv_weights_memory}, {DNNL_ARG_BIAS, conv_bias_memory}, {DNNL_ARG_DST, conv_dst_memory}}); //[Create convolution primitive] auto user_dst_memory = memory({{conv_dst_tz}, dt::f32, tag::nchw}, eng); write_to_dnnl_memory(user_dst.data(), user_dst_memory); primitive_attr dst_attr; dst_attr.set_output_scales(dst_mask, dst_scales); auto dst_reorder_pd = reorder::primitive_desc(eng, conv_dst_memory.get_desc(), eng, user_dst_memory.get_desc(), dst_attr); auto dst_reorder = reorder(dst_reorder_pd); dst_reorder.execute(s, conv_dst_memory, user_dst_memory); //[Dequantize the result] s.wait(); } int main(int argc, char **argv) { return handle_example_errors( simple_net_int8, parse_engine_kind(argc, argv)); }