oneAPI Deep Neural Network Library (oneDNN)
Performance library for Deep Learning
1.96.0
dnnl::pooling_v2_forward::desc Struct Reference

Descriptor for a pooling forward propagation primitive. More...

#include <dnnl.hpp>

Collaboration diagram for dnnl::pooling_v2_forward::desc:

Public Member Functions

 desc (prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &dst_desc, const memory::dims &strides, const memory::dims &kernel, const memory::dims &dilation, const memory::dims &padding_l, const memory::dims &padding_r)
 Constructs a descriptor for pooling v2 (dilated pooling) forward propagation primitive. More...
 

Detailed Description

Descriptor for a pooling forward propagation primitive.

Examples:
pooling.cpp.

Constructor & Destructor Documentation

◆ desc()

dnnl::pooling_v2_forward::desc::desc ( prop_kind  aprop_kind,
algorithm  aalgorithm,
const memory::desc src_desc,
const memory::desc dst_desc,
const memory::dims strides,
const memory::dims kernel,
const memory::dims dilation,
const memory::dims padding_l,
const memory::dims padding_r 
)
inline

Constructs a descriptor for pooling v2 (dilated pooling) forward propagation primitive.

Arrays strides, kernel, dilation, padding_l and padding_r contain values for spatial dimensions only and hence must have the same number of elements as there are spatial dimensions. The order of values is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Parameters
aprop_kindPropagation kind. Possible values are dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
aalgorithmPooling algorithm kind: either dnnl::algorithm::pooling_max, dnnl::algorithm::pooling_avg_include_padding, or dnnl::algorithm::pooling_avg (same as dnnl::algorithm::pooling_avg_exclude_padding).
src_descSource memory descriptor.
dst_descDestination memory descriptor.
stridesVector of strides for spatial dimension.
kernelVector of kernel spatial dimensions.
dilationArray of dilations for spatial dimension.
padding_lVector of padding values for low indices for each spatial dimension ([[front,] top,] left).
padding_rVector of padding values for high indices for each spatial dimension ([[back,] bottom,] right).

The documentation for this struct was generated from the following file: