oneAPI Deep Neural Network Library (oneDNN)
Performance library for Deep Learning
1.96.0
pooling.cpp

Annotated version: Pooling Primitive Example

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm>
#include <cmath>
#include <iostream>
#include <string>
#include <vector>
#include "example_utils.hpp"
using namespace dnnl;
void pooling_example(dnnl::engine::kind engine_kind) {
// Create execution dnnl::engine.
dnnl::engine engine(engine_kind, 0);
// Create dnnl::stream.
dnnl::stream engine_stream(engine);
// Tensor dimensions.
const memory::dim N = 3, // batch size
IC = 3, // input channels
IH = 27, // input tensor height
IW = 27, // input tensor width
KH = 11, // kernel height
KW = 11, // kernel width
PH_L = 0, // height padding: left
PH_R = 0, // height padding: right
PW_L = 0, // width padding: left
PW_R = 0, // width padding: right
SH = 4, // height-wise stride
SW = 4, // width-wise stride
DH = 1, // height-wise dilation
DW = 1; // width-wise dilation
const memory::dim OH = (IH - ((KH - 1) * DH + KH) + PH_L + PH_R) / SH + 1;
const memory::dim OW = (IW - ((KW - 1) * DW + KW) + PW_L + PW_R) / SW + 1;
// Source (src) and destination (dst) tensors dimensions.
memory::dims src_dims = {N, IC, IH, IW};
memory::dims dst_dims = {N, IC, OH, OW};
// Kernel dimensions.
memory::dims kernel_dims = {KH, KW};
// Strides, padding dimensions.
memory::dims strides_dims = {SH, SW};
memory::dims padding_dims_l = {PH_L, PW_L};
memory::dims padding_dims_r = {PH_R, PW_R};
memory::dims dilation = {DH, DW};
// Allocate buffers.
std::vector<float> src_data(product(src_dims));
std::vector<float> dst_data(product(dst_dims));
std::generate(src_data.begin(), src_data.end(), []() {
static int i = 0;
return std::cos(i++ / 10.f);
});
// Create memory descriptors and memory objects for src and dst.
auto src_md = memory::desc(src_dims, dt::f32, tag::nchw);
auto src_mem = memory(src_md, engine);
auto dst_md = memory::desc(dst_dims, dt::f32, tag::nchw);
auto dst_mem = memory(dst_md, engine);
// Write data to memory object's handle.
write_to_dnnl_memory(src_data.data(), src_mem);
// Create operation descriptor.
algorithm::pooling_max, src_md, dst_md, strides_dims, kernel_dims,
dilation, padding_dims_l, padding_dims_r);
// Create primitive descriptor.
// Create workspace memory objects using memory descriptor created by the
// primitive descriptor.
// NOTE: Here, the workspace is required to save the indices where maximum
// was found, and is used in backward pooling to perform upsampling.
auto workspace_mem = memory(pooling_pd.workspace_desc(), engine);
// Create the primitive.
auto pooling_prim = pooling_v2_forward(pooling_pd);
// Primitive arguments. Set up in-place execution by assigning src as DST.
std::unordered_map<int, memory> pooling_args;
pooling_args.insert({DNNL_ARG_SRC, src_mem});
pooling_args.insert({DNNL_ARG_DST, dst_mem});
pooling_args.insert({DNNL_ARG_WORKSPACE, workspace_mem});
// Primitive execution: pooling.
pooling_prim.execute(engine_stream, pooling_args);
// Wait for the computation to finalize.
engine_stream.wait();
// Read data from memory object's handle.
read_from_dnnl_memory(dst_data.data(), dst_mem);
}
int main(int argc, char **argv) {
return handle_example_errors(
pooling_example, parse_engine_kind(argc, argv));
}