Deep Neural Network Library (DNNL)  1.3.0
Performance library for Deep Learning
Public Member Functions | List of all members
dnnl::pooling_backward::desc Struct Reference

Descriptor for a pooling backward propagation primitive. More...

#include <dnnl.hpp>

Collaboration diagram for dnnl::pooling_backward::desc:
Collaboration graph
[legend]

Public Member Functions

 desc (algorithm algorithm, const memory::desc &diff_src_desc, const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims &kernel, const memory::dims &padding_l, const memory::dims &padding_r)
 Constructs a descriptor for pooling backward propagation primitive. More...
 

Detailed Description

Descriptor for a pooling backward propagation primitive.

Examples:
cnn_training_f32.cpp, and cpu_cnn_training_bf16.cpp.

Constructor & Destructor Documentation

◆ desc()

dnnl::pooling_backward::desc::desc ( algorithm  algorithm,
const memory::desc diff_src_desc,
const memory::desc diff_dst_desc,
const memory::dims strides,
const memory::dims kernel,
const memory::dims padding_l,
const memory::dims padding_r 
)
inline

Constructs a descriptor for pooling backward propagation primitive.

Inputs:

Outputs:

Parameters
algorithmPooling algorithm kind: either dnnl::algorithm::pooling_max, dnnl::algorithm::pooling_avg_include_padding, or dnnl::algorithm::pooling_avg (same as dnnl::algorithm::pooling_avg_exclude_padding).
diff_src_descDiff source memory descriptor.
diff_dst_descDiff destination memory descriptor.
stridesVector of strides for spatial dimension.
kernelVector of kernel spatial dimensions.
padding_lVector of padding values for low indices for each spatial dimension (front, top, left).
padding_rVector of padding values for high indices for each spatial dimension (back, bottom, right).

The documentation for this struct was generated from the following file: