Deep Neural Network Library (DNNL)  1.3.0
Performance library for Deep Learning
Public Member Functions | List of all members
dnnl::convolution_backward_data::desc Struct Reference

Descriptor for a convolution backward propagation primitive. More...

#include <dnnl.hpp>

Collaboration diagram for dnnl::convolution_backward_data::desc:
Collaboration graph
[legend]

Public Member Functions

 desc (algorithm algorithm, const memory::desc &diff_src_desc, const memory::desc &weights_desc, const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims &padding_l, const memory::dims &padding_r)
 Constructs a descriptor for a convolution backward propagation primitive. More...
 
 desc (algorithm algorithm, const memory::desc &diff_src_desc, const memory::desc &weights_desc, const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims &dilates, const memory::dims &padding_l, const memory::dims &padding_r)
 Constructs a descriptor for dilated convolution backward propagation primitive. More...
 

Detailed Description

Descriptor for a convolution backward propagation primitive.

Constructor & Destructor Documentation

◆ desc() [1/2]

dnnl::convolution_backward_data::desc::desc ( algorithm  algorithm,
const memory::desc diff_src_desc,
const memory::desc weights_desc,
const memory::desc diff_dst_desc,
const memory::dims strides,
const memory::dims padding_l,
const memory::dims padding_r 
)
inline

Constructs a descriptor for a convolution backward propagation primitive.

Note
Memory descriptors can be initialized with dnnl::memory::format_tag::any value of format_tag.

Inputs:

Outputs:

Parameters
algorithmConvolution algorithm. Possible values are dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and dnnl::algorithm::convolution_auto.
diff_src_descDiff source memory descriptor.
weights_descWeights memory descriptor.
diff_dst_descDiff destination memory descriptor.
stridesStrides for each spatial dimension.
padding_lVector of padding values for low indices for each spatial dimension (front, top, left).
padding_rVector of padding values for high indices for each spatial dimension (back, bottom, right).

◆ desc() [2/2]

dnnl::convolution_backward_data::desc::desc ( algorithm  algorithm,
const memory::desc diff_src_desc,
const memory::desc weights_desc,
const memory::desc diff_dst_desc,
const memory::dims strides,
const memory::dims dilates,
const memory::dims padding_l,
const memory::dims padding_r 
)
inline

Constructs a descriptor for dilated convolution backward propagation primitive.

Note
Memory descriptors can be initialized with dnnl::memory::format_tag::any value of format_tag.

Inputs:

Outputs:

Parameters
algorithmConvolution algorithm. Possible values are dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and dnnl::algorithm::convolution_auto.
diff_src_descDiff source memory descriptor.
weights_descWeights memory descriptor.
diff_dst_descDiff destination memory descriptor.
stridesStrides for each spatial dimension.
dilatesDilations for each spatial dimension. A zero value means no dilation in the corresponding dimension.
padding_lVector of padding values for low indices for each spatial dimension (front, top, left).
padding_rVector of padding values for high indices for each spatial dimension (back, bottom, right).

The documentation for this struct was generated from the following file: