Deep Neural Network Library (DNNL)  1.1.3
Performance library for Deep Learning
Classes | List of all members
dnnl::layer_normalization_backward Struct Reference

layer normalization backward propagation. More...

#include <dnnl.hpp>

Inheritance diagram for dnnl::layer_normalization_backward:
Inheritance graph
[legend]
Collaboration diagram for dnnl::layer_normalization_backward:
Collaboration graph
[legend]

Classes

struct  desc
 Descriptor for layer normalization backward propagation. More...
 
struct  primitive_desc
 Primitive descriptor for layer normalization backward propagation. More...
 

Additional Inherited Members

- Public Types inherited from dnnl::primitive
enum  kind {
  kind::undef = dnnl_undefined_primitive, kind::reorder = dnnl_reorder, kind::shuffle = dnnl_shuffle, kind::concat = dnnl_concat,
  kind::sum = dnnl_sum, kind::convolution = dnnl_convolution, kind::deconvolution = dnnl_deconvolution, kind::eltwise = dnnl_eltwise,
  kind::softmax = dnnl_softmax, kind::pooling = dnnl_pooling, kind::lrn = dnnl_lrn, kind::batch_normalization = dnnl_batch_normalization,
  kind::layer_normalization = dnnl_layer_normalization, kind::inner_product = dnnl_inner_product, kind::rnn = dnnl_rnn, kind::binary = dnnl_binary
}
 Kinds of primitives. More...
 
- Public Member Functions inherited from dnnl::primitive
const_dnnl_primitive_desc_t get_primitive_desc () const
 Returns the descriptor of the underlying C API primitive.
 
- Public Member Functions inherited from dnnl::handle< dnnl_primitive_t >
 handle ()=default
 Empty constructor. More...
 
 handle (dnnl_primitive_t t, bool weak=false)
 Constructs a C handle wrapper from a C handle. More...
 
void reset (dnnl_primitive_t t, bool weak=false)
 Resets the value of a C handle. More...
 
dnnl_primitive_t get (bool allow_emtpy=false) const
 Returns the value of the underlying C handle.
 

Detailed Description

layer normalization backward propagation.

Implements descriptor, primitive descriptor, and primitive.


The documentation for this struct was generated from the following file: