A proxy to Types in C API. More...
|
strong |
|
strong |
Propagation kind.
Enumerator | |
---|---|
undef | Undefined propagation kind. |
forward_training | Forward data propagation (training mode). In this mode primitives perform computations necessary for subsequent backward propagation. |
forward_inference | Forward data propagation (inference mode). In this mode primitives perform only computations that are necessary for inference and omit computations that are necessary only for backward propagation. |
forward_scoring | Forward data propagation, alias for dnnl::prop_kind::forward_inference. |
forward | Forward data propagation, alias for dnnl::prop_kind::forward_training. |
backward | Backward propagation (with respect to all parameters). |
backward_data | Backward data propagation. |
backward_weights | Backward weights propagation. |
backward_bias | Backward bias propagation. |
|
strong |
Kinds of algorithms.
Enumerator | |
---|---|
convolution_auto | Convolution algorithm(either direct or Winograd) is chosen just in time. |
convolution_direct | Direct convolution. |
convolution_winograd | Winograd convolution. |
deconvolution_direct | Direct deconvolution. |
deconvolution_winograd | Winograd deconvolution. |
eltwise_relu | Eltwise: ReLU. |
eltwise_tanh | Eltwise: hyperbolic tangent non-linearity (tanh) |
eltwise_elu | Eltwise: parametric exponential linear unit (elu) |
eltwise_square | Eltwise: square. |
eltwise_abs | Eltwise: abs. |
eltwise_sqrt | Eltwise: square root. |
eltwise_swish | Eltwise: x*sigmoid(a*x) |
eltwise_linear | Eltwise: linear. |
eltwise_bounded_relu | Eltwise: bounded_relu. |
eltwise_soft_relu | Eltwise: soft_relu. |
eltwise_logistic | Eltwise: logistic. |
eltwise_exp | Eltwise: exponent. |
eltwise_gelu | Eltwise: gelu. |
lrn_across_channels | Local response normalization (LRN) across multiple channels. |
lrn_within_channel | LRN within a single channel. |
pooling_max | Max pooling. |
pooling_avg | Average pooling exclude padding, alias for dnnl::algorithm::pooling_avg_include_padding. |
pooling_avg_include_padding | Average pooling include padding. |
pooling_avg_exclude_padding | Average pooling exclude padding. |
vanilla_rnn | RNN cell. |
vanilla_lstm | LSTM cell. |
vanilla_gru | GRU cell. |
lbr_gru | GRU cell with linear before reset. Modification of original GRU cell. Differs from dnnl_vanilla_gru in how the new memory gate is calculated: \[ c_t = tanh(W_c*x_t + b_{c_x} + r_t*(U_c*h_{t-1}+b_{c_h})) \] Primitive expects 4 biases on input: \([b_{u}, b_{r}, b_{c_x}, b_{c_h}]\) |
binary_add | Binary add. |
binary_mul | Binary mul. |
|
strong |
Flags for batch normalization primitive.
Enumerator | |
---|---|
use_global_stats | Use global statistics. If specified
If not specified:
|
use_scale_shift | Use scale and shift parameters. If specified:
If not specified:
|
fuse_norm_relu | Fuse with ReLU. If specified:
|
|
strong |
Primitive descriptor query specification.
In general should be used from C++ API since required queries are directly implemented as class members (for instance, a query for source memory descriptor).
For more information see dnnl_query_t.
Enumerator | |
---|---|
undef | no query |
engine | execution engine |
primitive_kind | primitive kind |
num_of_inputs_s32 | number of inputs expected |
num_of_outputs_s32 | number of outputs expected |
time_estimate_f64 | runtime estimation (seconds), unimplemented |
memory_consumption_s64 | memory consumption (bytes) extra (scratch) memory, additional to all inputs and outputs memory
|
scratchpad_engine | scratchpad engine engine to be used for creating scratchpad memory |
reorder_src_engine | reorder source engine |
reorder_dst_engine | reorder destination engine |
impl_info_str | implementation name |
op_d | op descriptor |
convolution_d | convolution descriptor |
deconvolution_d | deconvolution descriptor |
shuffle_d | shuffle descriptor |
eltwise_d | eltwise descriptor |
softmax_d | softmax descriptor |
pooling_d | pooling descriptor |
lrn_d | lrn descriptor |
batch_normalization_d | batch normalization descriptor |
layer_normalization_d | layer normalization descriptor |
inner_product_d | inner product descriptor |
rnn_d | rnn descriptor |
binary_d | binary descriptor |
src_md | source memory desc |
diff_src_md | source gradient memory desc |
weights_md | weights memory descriptor desc |
diff_weights_md | weights grad. memory desc |
dst_md | destination memory desc |
diff_dst_md | destination grad. memory desc |
workspace_md | workspace memory desc |
scratchpad_md | scratchpad memory desc |