Deep Neural Network Library (DNNL)  1.1.3
Performance library for Deep Learning
Functions

A primitive to perform max or average pooling. More...

Functions

dnnl_status_t DNNL_API dnnl_pooling_forward_desc_init (dnnl_pooling_desc_t *pool_desc, dnnl_prop_kind_t prop_kind, dnnl_alg_kind_t alg_kind, const dnnl_memory_desc_t *src_desc, const dnnl_memory_desc_t *dst_desc, const dnnl_dims_t strides, const dnnl_dims_t kernel, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r)
 Initializes a pooling descriptor pool_desc for forward propagation using prop_kind (possible values are dnnl_forward_training and dnnl_forward_inference), alg_kind, memory descriptors, and pooling parameters in the spatial domain: strides, kernel sizes, padding_l, and padding_r. More...
 
dnnl_status_t DNNL_API dnnl_pooling_backward_desc_init (dnnl_pooling_desc_t *pool_desc, dnnl_alg_kind_t alg_kind, const dnnl_memory_desc_t *diff_src_desc, const dnnl_memory_desc_t *diff_dst_desc, const dnnl_dims_t strides, const dnnl_dims_t kernel, const dnnl_dims_t padding_l, const dnnl_dims_t padding_r)
 Initializes a pooling descriptor pool_desc for backward propagation using alg_kind, memory descriptors, and pooling parameters in the spatial domain: strides, kernel sizes, padding_l, and padding_r. More...
 

Detailed Description

A primitive to perform max or average pooling.

See also
Pooling in developer guide
Pooling in C++ API

Function Documentation

◆ dnnl_pooling_forward_desc_init()

dnnl_status_t DNNL_API dnnl_pooling_forward_desc_init ( dnnl_pooling_desc_t pool_desc,
dnnl_prop_kind_t  prop_kind,
dnnl_alg_kind_t  alg_kind,
const dnnl_memory_desc_t src_desc,
const dnnl_memory_desc_t dst_desc,
const dnnl_dims_t  strides,
const dnnl_dims_t  kernel,
const dnnl_dims_t  padding_l,
const dnnl_dims_t  padding_r 
)

Initializes a pooling descriptor pool_desc for forward propagation using prop_kind (possible values are dnnl_forward_training and dnnl_forward_inference), alg_kind, memory descriptors, and pooling parameters in the spatial domain: strides, kernel sizes, padding_l, and padding_r.

Note
If padding_r is NULL, the padding is supposed to be symmetric.

Inputs:

Outputs:

Examples:
cnn_inference_f32.c, and cpu_cnn_training_f32.c.

◆ dnnl_pooling_backward_desc_init()

dnnl_status_t DNNL_API dnnl_pooling_backward_desc_init ( dnnl_pooling_desc_t pool_desc,
dnnl_alg_kind_t  alg_kind,
const dnnl_memory_desc_t diff_src_desc,
const dnnl_memory_desc_t diff_dst_desc,
const dnnl_dims_t  strides,
const dnnl_dims_t  kernel,
const dnnl_dims_t  padding_l,
const dnnl_dims_t  padding_r 
)

Initializes a pooling descriptor pool_desc for backward propagation using alg_kind, memory descriptors, and pooling parameters in the spatial domain: strides, kernel sizes, padding_l, and padding_r.

Note
If padding_r is NULL, the padding is supposed to be symmetric.

Inputs:

Outputs:

Examples:
cpu_cnn_training_f32.c.