A primitive to perform layer normalization. More...
Functions | |
dnnl_status_t DNNL_API | dnnl_layer_normalization_forward_desc_init (dnnl_layer_normalization_desc_t *lnrm_desc, dnnl_prop_kind_t prop_kind, const dnnl_memory_desc_t *data_desc, const dnnl_memory_desc_t *stat_desc, float epsilon, unsigned flags) |
Initializes a layer normalization descriptor lnrm_desc for forward propagation using prop_kind (possible values are dnnl_forward_training and dnnl_forward_inference), memory descriptor data_desc , normalization parameter epsilon , and flags set using bit flags of type dnnl_layer_normalization_desc_t. More... | |
dnnl_status_t DNNL_API | dnnl_layer_normalization_backward_desc_init (dnnl_layer_normalization_desc_t *lnrm_desc, dnnl_prop_kind_t prop_kind, const dnnl_memory_desc_t *diff_data_desc, const dnnl_memory_desc_t *data_desc, const dnnl_memory_desc_t *stat_desc, float epsilon, unsigned flags) |
Initializes a layer normalization descriptor lnrm_desc for backward propagation with respect to data and scale-shift parameters using memory descriptors data_desc and diff_data_desc , normalization parameter epsilon , and flags set using bit flags of type dnnl_layer_normalization_desc_t. More... | |
A primitive to perform layer normalization.
Normalization is performed over the last logical axis of data tensor.
Both forward and backward passes support in-place operation; that is, src and dst point to the same memory for forward pass, and diff_dst and diff_src point to the same memory for backward pass.
Layer normalization supports different flavors controlled by dnnl_layer_normalization_desc_t. For example, layer normalization can compute the mean and variance on its own or take them as inputs. It can either perform scaling and shifting using gamma and beta parameters or not.
dnnl_status_t DNNL_API dnnl_layer_normalization_forward_desc_init | ( | dnnl_layer_normalization_desc_t * | lnrm_desc, |
dnnl_prop_kind_t | prop_kind, | ||
const dnnl_memory_desc_t * | data_desc, | ||
const dnnl_memory_desc_t * | stat_desc, | ||
float | epsilon, | ||
unsigned | flags | ||
) |
Initializes a layer normalization descriptor lnrm_desc
for forward propagation using prop_kind
(possible values are dnnl_forward_training and dnnl_forward_inference), memory descriptor data_desc
, normalization parameter epsilon
, and flags
set using bit flags of type dnnl_layer_normalization_desc_t.
Inputs:
flags
flags
flags
Outputs:
flags
prop_kind
= dnnl_forward_trainingflags
and prop_kind
= dnnl_forward_trainingdnnl_status_t DNNL_API dnnl_layer_normalization_backward_desc_init | ( | dnnl_layer_normalization_desc_t * | lnrm_desc, |
dnnl_prop_kind_t | prop_kind, | ||
const dnnl_memory_desc_t * | diff_data_desc, | ||
const dnnl_memory_desc_t * | data_desc, | ||
const dnnl_memory_desc_t * | stat_desc, | ||
float | epsilon, | ||
unsigned | flags | ||
) |
Initializes a layer normalization descriptor lnrm_desc
for backward propagation with respect to data and scale-shift parameters using memory descriptors data_desc
and diff_data_desc
, normalization parameter epsilon
, and flags
set using bit flags of type dnnl_layer_normalization_desc_t.
Inputs:
flags
Outputs:
flags
and prop_kind
= dnnl_backward