Deep Neural Network Library (DNNL)  1.1.3
Performance library for Deep Learning
CNN bf16 training example

This C++ API example demonstrates how to build an AlexNet model training using the bfloat16 data type.

The example implements a few layers from AlexNet model.

/*******************************************************************************
* Copyright 2019 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <assert.h>
#include <iostream>
#include <math.h>
#include <numeric>
#include <string>
#include "dnnl.hpp"
using namespace dnnl;
memory::dim product(const memory::dims &dims) {
return std::accumulate(dims.begin(), dims.end(), (memory::dim)1,
std::multiplies<memory::dim>());
}
void simple_net() {
using tag = memory::format_tag;
using dt = memory::data_type;
auto cpu_engine = engine(engine::kind::cpu, 0);
stream s(cpu_engine);
// Vector of primitives and their execute arguments
std::vector<primitive> net_fwd, net_bwd;
std::vector<std::unordered_map<int, memory>> net_fwd_args, net_bwd_args;
const int batch = 32;
// float data type is used for user data
std::vector<float> net_src(batch * 3 * 227 * 227);
std::vector<float> net_dst(batch * 96 * 27 * 27);
// initializing non-zero values for src
for (size_t i = 0; i < net_src.size(); ++i)
net_src[i] = sinf((float)i);
// AlexNet: conv
// {batch, 3, 227, 227} (x) {96, 3, 11, 11} -> {batch, 96, 55, 55}
// strides: {4, 4}
memory::dims conv_src_tz = {batch, 3, 227, 227};
memory::dims conv_weights_tz = {96, 3, 11, 11};
memory::dims conv_bias_tz = {96};
memory::dims conv_dst_tz = {batch, 96, 55, 55};
memory::dims conv_strides = {4, 4};
memory::dims conv_padding = {0, 0};
// float data type is used for user data
std::vector<float> conv_weights(product(conv_weights_tz));
std::vector<float> conv_bias(product(conv_bias_tz));
// initializing non-zero values for weights and bias
for (size_t i = 0; i < conv_weights.size(); ++i)
conv_weights[i] = sinf((float)i);
for (size_t i = 0; i < conv_bias.size(); ++i)
conv_bias[i] = sinf((float)i);
// create memory for user data
auto conv_user_src_memory = memory(
{{conv_src_tz}, dt::f32, tag::nchw}, cpu_engine, net_src.data());
auto conv_user_weights_memory
= memory({{conv_weights_tz}, dt::f32, tag::oihw}, cpu_engine,
conv_weights.data());
auto conv_user_bias_memory = memory(
{{conv_bias_tz}, dt::f32, tag::x}, cpu_engine, conv_bias.data());
// create memory descriptors for bfloat16 convolution data w/ no specified
// format tag(`any`)
// tag `any` lets a primitive(convolution in this case)
// chose the memory format preferred for best performance.
auto conv_src_md = memory::desc({conv_src_tz}, dt::bf16, tag::any);
auto conv_bias_md = memory::desc({conv_bias_tz}, dt::bf16, tag::any);
auto conv_weights_md = memory::desc({conv_weights_tz}, dt::bf16, tag::any);
auto conv_dst_md = memory::desc({conv_dst_tz}, dt::bf16, tag::any);
// create a convolution primitive descriptor
algorithm::convolution_direct, conv_src_md, conv_weights_md,
conv_bias_md, conv_dst_md, conv_strides, conv_padding,
conv_padding);
auto conv_pd = convolution_forward::primitive_desc(conv_desc, cpu_engine);
// create reorder primitives between user input and conv src if needed
auto conv_src_memory = conv_user_src_memory;
if (conv_pd.src_desc() != conv_user_src_memory.get_desc()) {
conv_src_memory = memory(conv_pd.src_desc(), cpu_engine);
net_fwd.push_back(reorder(conv_user_src_memory, conv_src_memory));
net_fwd_args.push_back({{DNNL_ARG_FROM, conv_user_src_memory},
{DNNL_ARG_TO, conv_src_memory}});
}
auto conv_weights_memory = conv_user_weights_memory;
if (conv_pd.weights_desc() != conv_user_weights_memory.get_desc()) {
conv_weights_memory = memory(conv_pd.weights_desc(), cpu_engine);
net_fwd.push_back(
reorder(conv_user_weights_memory, conv_weights_memory));
net_fwd_args.push_back({{DNNL_ARG_FROM, conv_user_weights_memory},
{DNNL_ARG_TO, conv_weights_memory}});
}
// create memory for conv dst
auto conv_dst_memory = memory(conv_pd.dst_desc(), cpu_engine);
// finally create a convolution primitive
net_fwd.push_back(convolution_forward(conv_pd));
net_fwd_args.push_back({{DNNL_ARG_SRC, conv_src_memory},
{DNNL_ARG_WEIGHTS, conv_weights_memory},
{DNNL_ARG_BIAS, conv_user_bias_memory},
{DNNL_ARG_DST, conv_dst_memory}});
// AlexNet: relu
// {batch, 96, 55, 55} -> {batch, 96, 55, 55}
memory::dims relu_data_tz = {batch, 96, 55, 55};
const float negative_slope = 1.0f;
// create relu primitive desc
// keep memory format tag of source same as the format tag of convolution
// output in order to avoid reorder
algorithm::eltwise_relu, conv_pd.dst_desc(), negative_slope);
auto relu_pd = eltwise_forward::primitive_desc(relu_desc, cpu_engine);
// create relu dst memory
auto relu_dst_memory = memory(relu_pd.dst_desc(), cpu_engine);
// finally create a relu primitive
net_fwd.push_back(eltwise_forward(relu_pd));
net_fwd_args.push_back(
{{DNNL_ARG_SRC, conv_dst_memory}, {DNNL_ARG_DST, relu_dst_memory}});
// AlexNet: lrn
// {batch, 96, 55, 55} -> {batch, 96, 55, 55}
// local size: 5
// alpha: 0.0001
// beta: 0.75
// k: 1.0
memory::dims lrn_data_tz = {batch, 96, 55, 55};
const uint32_t local_size = 5;
const float alpha = 0.0001f;
const float beta = 0.75f;
const float k = 1.0f;
// create a lrn primitive descriptor
algorithm::lrn_across_channels, relu_pd.dst_desc(), local_size,
alpha, beta, k);
auto lrn_pd = lrn_forward::primitive_desc(lrn_desc, cpu_engine);
// create lrn dst memory
auto lrn_dst_memory = memory(lrn_pd.dst_desc(), cpu_engine);
// create workspace only in training and only for forward primitive
// query lrn_pd for workspace, this memory will be shared with forward lrn
auto lrn_workspace_memory = memory(lrn_pd.workspace_desc(), cpu_engine);
// finally create a lrn primitive
net_fwd.push_back(lrn_forward(lrn_pd));
net_fwd_args.push_back(
{{DNNL_ARG_SRC, relu_dst_memory}, {DNNL_ARG_DST, lrn_dst_memory},
{DNNL_ARG_WORKSPACE, lrn_workspace_memory}});
// AlexNet: pool
// {batch, 96, 55, 55} -> {batch, 96, 27, 27}
// kernel: {3, 3}
// strides: {2, 2}
memory::dims pool_dst_tz = {batch, 96, 27, 27};
memory::dims pool_kernel = {3, 3};
memory::dims pool_strides = {2, 2};
memory::dims pool_padding = {0, 0};
// create memory for pool dst data in user format
auto pool_user_dst_memory = memory(
{{pool_dst_tz}, dt::f32, tag::nchw}, cpu_engine, net_dst.data());
// create pool dst memory descriptor in format any for bfloat16 data type
auto pool_dst_md = memory::desc({pool_dst_tz}, dt::bf16, tag::any);
// create a pooling primitive descriptor
algorithm::pooling_max, lrn_dst_memory.get_desc(), pool_dst_md,
pool_strides, pool_kernel, pool_padding, pool_padding);
auto pool_pd = pooling_forward::primitive_desc(pool_desc, cpu_engine);
// create pooling workspace memory if training
auto pool_workspace_memory = memory(pool_pd.workspace_desc(), cpu_engine);
// create a pooling primitive
net_fwd.push_back(pooling_forward(pool_pd));
// leave DST unknown for now (see the next reorder)
net_fwd_args.push_back({{DNNL_ARG_SRC, lrn_dst_memory},
// delay putting DST until reorder (if needed)
{DNNL_ARG_WORKSPACE, pool_workspace_memory}});
// create reorder primitive between pool dst and user dst format
// if needed
auto pool_dst_memory = pool_user_dst_memory;
if (pool_pd.dst_desc() != pool_user_dst_memory.get_desc()) {
pool_dst_memory = memory(pool_pd.dst_desc(), cpu_engine);
net_fwd_args.back().insert({DNNL_ARG_DST, pool_dst_memory});
net_fwd.push_back(reorder(pool_dst_memory, pool_user_dst_memory));
net_fwd_args.push_back({{DNNL_ARG_FROM, pool_dst_memory},
{DNNL_ARG_TO, pool_user_dst_memory}});
} else {
net_fwd_args.back().insert({DNNL_ARG_DST, pool_dst_memory});
}
//-----------------------------------------------------------------------
//----------------- Backward Stream -------------------------------------
// ... user diff_data in float data type ...
std::vector<float> net_diff_dst(batch * 96 * 27 * 27);
for (size_t i = 0; i < net_diff_dst.size(); ++i)
net_diff_dst[i] = sinf((float)i);
// create memory for user diff dst data stored in float data type
auto pool_user_diff_dst_memory = memory({{pool_dst_tz}, dt::f32, tag::nchw},
cpu_engine, net_diff_dst.data());
// Backward pooling
// create memory descriptors for pooling
auto pool_diff_src_md = memory::desc({lrn_data_tz}, dt::bf16, tag::any);
auto pool_diff_dst_md = memory::desc({pool_dst_tz}, dt::bf16, tag::any);
// create backward pooling descriptor
pool_diff_src_md, pool_diff_dst_md, pool_strides, pool_kernel,
pool_padding, pool_padding);
// backward primitive descriptor needs to hint forward descriptor
pool_bwd_desc, cpu_engine, pool_pd);
// create reorder primitive between user diff dst and pool diff dst
// if required
auto pool_diff_dst_memory = pool_user_diff_dst_memory;
if (pool_dst_memory.get_desc() != pool_user_diff_dst_memory.get_desc()) {
pool_diff_dst_memory = memory(pool_dst_memory.get_desc(), cpu_engine);
net_bwd.push_back(
reorder(pool_user_diff_dst_memory, pool_diff_dst_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, pool_user_diff_dst_memory},
{DNNL_ARG_TO, pool_diff_dst_memory}});
}
// create memory for pool diff src
auto pool_diff_src_memory = memory(pool_bwd_pd.diff_src_desc(), cpu_engine);
// finally create backward pooling primitive
net_bwd.push_back(pooling_backward(pool_bwd_pd));
net_bwd_args.push_back({{DNNL_ARG_DIFF_DST, pool_diff_dst_memory},
{DNNL_ARG_DIFF_SRC, pool_diff_src_memory},
{DNNL_ARG_WORKSPACE, pool_workspace_memory}});
// Backward lrn
auto lrn_diff_dst_md = memory::desc({lrn_data_tz}, dt::bf16, tag::any);
// create backward lrn primitive descriptor
lrn_pd.src_desc(), lrn_diff_dst_md, local_size, alpha, beta, k);
auto lrn_bwd_pd
= lrn_backward::primitive_desc(lrn_bwd_desc, cpu_engine, lrn_pd);
// create reorder primitive between pool diff src and lrn diff dst
// if required
auto lrn_diff_dst_memory = pool_diff_src_memory;
if (lrn_diff_dst_memory.get_desc() != lrn_bwd_pd.diff_dst_desc()) {
lrn_diff_dst_memory = memory(lrn_bwd_pd.diff_dst_desc(), cpu_engine);
net_bwd.push_back(reorder(pool_diff_src_memory, lrn_diff_dst_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, pool_diff_src_memory},
{DNNL_ARG_TO, lrn_diff_dst_memory}});
}
// create memory for lrn diff src
auto lrn_diff_src_memory = memory(lrn_bwd_pd.diff_src_desc(), cpu_engine);
// finally create a lrn backward primitive
// backward lrn needs src: relu dst in this topology
net_bwd.push_back(lrn_backward(lrn_bwd_pd));
net_bwd_args.push_back({{DNNL_ARG_SRC, relu_dst_memory},
{DNNL_ARG_DIFF_DST, lrn_diff_dst_memory},
{DNNL_ARG_DIFF_SRC, lrn_diff_src_memory},
{DNNL_ARG_WORKSPACE, lrn_workspace_memory}});
// Backward relu
auto relu_diff_dst_md = memory::desc({relu_data_tz}, dt::bf16, tag::any);
auto relu_src_md = conv_pd.dst_desc();
// create backward relu primitive_descriptor
relu_diff_dst_md, relu_src_md, negative_slope);
relu_bwd_desc, cpu_engine, relu_pd);
// create reorder primitive between lrn diff src and relu diff dst
// if required
auto relu_diff_dst_memory = lrn_diff_src_memory;
if (relu_diff_dst_memory.get_desc() != relu_bwd_pd.diff_dst_desc()) {
relu_diff_dst_memory = memory(relu_bwd_pd.diff_dst_desc(), cpu_engine);
net_bwd.push_back(reorder(lrn_diff_src_memory, relu_diff_dst_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, lrn_diff_src_memory},
{DNNL_ARG_TO, relu_diff_dst_memory}});
}
// create memory for relu diff src
auto relu_diff_src_memory = memory(relu_bwd_pd.diff_src_desc(), cpu_engine);
// finally create a backward relu primitive
net_bwd.push_back(eltwise_backward(relu_bwd_pd));
net_bwd_args.push_back({{DNNL_ARG_SRC, conv_dst_memory},
{DNNL_ARG_DIFF_DST, relu_diff_dst_memory},
{DNNL_ARG_DIFF_SRC, relu_diff_src_memory}});
// Backward convolution with respect to weights
// create user format diff weights and diff bias memory for float data type
std::vector<float> conv_user_diff_weights_buffer(product(conv_weights_tz));
std::vector<float> conv_diff_bias_buffer(product(conv_bias_tz));
auto conv_user_diff_weights_memory
= memory({{conv_weights_tz}, dt::f32, tag::nchw}, cpu_engine,
conv_user_diff_weights_buffer.data());
auto conv_diff_bias_memory = memory({{conv_bias_tz}, dt::f32, tag::x},
cpu_engine, conv_diff_bias_buffer.data());
// create memory descriptors for bfloat16 convolution data
auto conv_bwd_src_md = memory::desc({conv_src_tz}, dt::bf16, tag::any);
auto conv_diff_bias_md = memory::desc({conv_bias_tz}, dt::bf16, tag::any);
auto conv_diff_weights_md
= memory::desc({conv_weights_tz}, dt::bf16, tag::any);
auto conv_diff_dst_md = memory::desc({conv_dst_tz}, dt::bf16, tag::any);
// create backward convolution primitive descriptor
auto conv_bwd_weights_desc
conv_bwd_src_md, conv_diff_weights_md, conv_diff_bias_md,
conv_diff_dst_md, conv_strides, conv_padding, conv_padding);
conv_bwd_weights_desc, cpu_engine, conv_pd);
// for best performance convolution backward might chose
// different memory format for src and diff_dst
// than the memory formats preferred by forward convolution
// for src and dst respectively
// create reorder primitives for src from forward convolution to the
// format chosen by backward convolution
auto conv_bwd_src_memory = conv_src_memory;
if (conv_bwd_weights_pd.src_desc() != conv_src_memory.get_desc()) {
conv_bwd_src_memory
= memory(conv_bwd_weights_pd.src_desc(), cpu_engine);
net_bwd.push_back(reorder(conv_src_memory, conv_bwd_src_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, conv_src_memory},
{DNNL_ARG_TO, conv_bwd_src_memory}});
}
// create reorder primitives for diff_dst between diff_src from relu_bwd
// and format preferred by conv_diff_weights
auto conv_diff_dst_memory = relu_diff_src_memory;
if (conv_bwd_weights_pd.diff_dst_desc()
!= relu_diff_src_memory.get_desc()) {
conv_diff_dst_memory
= memory(conv_bwd_weights_pd.diff_dst_desc(), cpu_engine);
net_bwd.push_back(reorder(relu_diff_src_memory, conv_diff_dst_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, relu_diff_src_memory},
{DNNL_ARG_TO, conv_diff_dst_memory}});
}
// create backward convolution primitive
net_bwd.push_back(convolution_backward_weights(conv_bwd_weights_pd));
net_bwd_args.push_back({{DNNL_ARG_SRC, conv_bwd_src_memory},
{DNNL_ARG_DIFF_DST, conv_diff_dst_memory},
// delay putting DIFF_WEIGHTS until reorder (if needed)
{DNNL_ARG_DIFF_BIAS, conv_diff_bias_memory}});
// create reorder primitives between conv diff weights and user diff weights
// if needed
auto conv_diff_weights_memory = conv_user_diff_weights_memory;
if (conv_bwd_weights_pd.diff_weights_desc()
!= conv_user_diff_weights_memory.get_desc()) {
conv_diff_weights_memory
= memory(conv_bwd_weights_pd.diff_weights_desc(), cpu_engine);
net_bwd_args.back().insert(
{DNNL_ARG_DIFF_WEIGHTS, conv_diff_weights_memory});
net_bwd.push_back(reorder(
conv_diff_weights_memory, conv_user_diff_weights_memory));
net_bwd_args.push_back({{DNNL_ARG_FROM, conv_diff_weights_memory},
{DNNL_ARG_TO, conv_user_diff_weights_memory}});
} else {
net_bwd_args.back().insert(
{DNNL_ARG_DIFF_WEIGHTS, conv_diff_weights_memory});
}
// didn't we forget anything?
assert(net_fwd.size() == net_fwd_args.size() && "something is missing");
assert(net_bwd.size() == net_bwd_args.size() && "something is missing");
int n_iter = 1; // number of iterations for training
// execute
while (n_iter) {
// forward
for (size_t i = 0; i < net_fwd.size(); ++i)
net_fwd.at(i).execute(s, net_fwd_args.at(i));
// update net_diff_dst
// auto net_output = pool_user_dst_memory.get_data_handle();
// ..user updates net_diff_dst using net_output...
// some user defined func update_diff_dst(net_diff_dst.data(),
// net_output)
for (size_t i = 0; i < net_bwd.size(); ++i)
net_bwd.at(i).execute(s, net_bwd_args.at(i));
// update weights and bias using diff weights and bias
//
// auto net_diff_weights
// = conv_user_diff_weights_memory.get_data_handle();
// auto net_diff_bias = conv_diff_bias_memory.get_data_handle();
//
// ...user updates weights and bias using diff weights and bias...
//
// some user defined func update_weights(conv_weights.data(),
// conv_bias.data(), net_diff_weights, net_diff_bias);
--n_iter;
}
s.wait();
}
int main(int argc, char **argv) {
try {
simple_net();
std::cout << "passed" << std::endl;
} catch (error &e) {
std::cerr << "status: " << e.status << std::endl;
std::cerr << "message: " << e.message << std::endl;
}
return 0;
}