Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN)  1.0.4
Performance library for Deep Learning
Functions

A primitive to perform max or average pooling. More...

Functions

mkldnn_status_t MKLDNN_API mkldnn_pooling_forward_desc_init (mkldnn_pooling_desc_t *pool_desc, mkldnn_prop_kind_t prop_kind, mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *src_desc, const mkldnn_memory_desc_t *dst_desc, const mkldnn_dims_t strides, const mkldnn_dims_t kernel, const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r)
 Initializes a pooling descriptor pool_desc for forward propagation using prop_kind (possible values are mkldnn_forward_training and mkldnn_forward_inference), alg_kind, memory descriptors, and pooling parameters in the spatial domain: strides, kernel sizes, padding_l, and padding_r. More...
 
mkldnn_status_t MKLDNN_API mkldnn_pooling_backward_desc_init (mkldnn_pooling_desc_t *pool_desc, mkldnn_alg_kind_t alg_kind, const mkldnn_memory_desc_t *diff_src_desc, const mkldnn_memory_desc_t *diff_dst_desc, const mkldnn_dims_t strides, const mkldnn_dims_t kernel, const mkldnn_dims_t padding_l, const mkldnn_dims_t padding_r)
 Initializes a pooling descriptor pool_desc for backward propagation using alg_kind, memory descriptors, and pooling parameters in the spatial domain: strides, kernel sizes, padding_l, and padding_r. More...
 

Detailed Description

A primitive to perform max or average pooling.

See also
Pooling in developer guide
Pooling in C++ API

Function Documentation

◆ mkldnn_pooling_forward_desc_init()

mkldnn_status_t MKLDNN_API mkldnn_pooling_forward_desc_init ( mkldnn_pooling_desc_t pool_desc,
mkldnn_prop_kind_t  prop_kind,
mkldnn_alg_kind_t  alg_kind,
const mkldnn_memory_desc_t src_desc,
const mkldnn_memory_desc_t dst_desc,
const mkldnn_dims_t  strides,
const mkldnn_dims_t  kernel,
const mkldnn_dims_t  padding_l,
const mkldnn_dims_t  padding_r 
)

Initializes a pooling descriptor pool_desc for forward propagation using prop_kind (possible values are mkldnn_forward_training and mkldnn_forward_inference), alg_kind, memory descriptors, and pooling parameters in the spatial domain: strides, kernel sizes, padding_l, and padding_r.

Note
If padding_r is NULL, the padding is supposed to be symmetric.

Inputs:

Outputs:

Examples:
cpu_cnn_inference_f32.c, and cpu_cnn_training_f32.c.

◆ mkldnn_pooling_backward_desc_init()

mkldnn_status_t MKLDNN_API mkldnn_pooling_backward_desc_init ( mkldnn_pooling_desc_t pool_desc,
mkldnn_alg_kind_t  alg_kind,
const mkldnn_memory_desc_t diff_src_desc,
const mkldnn_memory_desc_t diff_dst_desc,
const mkldnn_dims_t  strides,
const mkldnn_dims_t  kernel,
const mkldnn_dims_t  padding_l,
const mkldnn_dims_t  padding_r 
)

Initializes a pooling descriptor pool_desc for backward propagation using alg_kind, memory descriptors, and pooling parameters in the spatial domain: strides, kernel sizes, padding_l, and padding_r.

Note
If padding_r is NULL, the padding is supposed to be symmetric.

Inputs:

Outputs:

Examples:
cpu_cnn_training_f32.c.