Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN)  1.0.4
Performance library for Deep Learning
gpu_opencl_interop.cpp

Annotated version: Getting started on GPU with OpenCL extensions API

/*******************************************************************************
* Copyright 2019 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
// [Prologue]
#include <CL/cl.h>
#include <mkldnn.hpp>
// Optional header to access debug functions like `mkldnn_status2str()`
#include "mkldnn_debug.h"
#include <iostream>
#include <numeric>
#include <sstream>
using namespace mkldnn;
using namespace std;
// [Prologue]
#define OCL_CHECK(x) \
do { \
cl_int s = (x); \
if (s != CL_SUCCESS) { \
printf("OpenCL error: %d at %s:%d\n", s, __FILE__, __LINE__); \
exit(1); \
} \
} while (0)
cl_kernel create_init_opencl_kernel(
cl_context ocl_ctx, const char *kernel_name, const char *ocl_code) {
cl_int err;
const char *sources[] = { ocl_code };
cl_program ocl_program
= clCreateProgramWithSource(ocl_ctx, 1, sources, nullptr, &err);
OCL_CHECK(err);
OCL_CHECK(
clBuildProgram(ocl_program, 0, nullptr, nullptr, nullptr, nullptr));
cl_kernel ocl_kernel = clCreateKernel(ocl_program, kernel_name, &err);
OCL_CHECK(err);
OCL_CHECK(clReleaseProgram(ocl_program));
return ocl_kernel;
}
void gpu_opencl_interop_tutorial() {
// [Initialize engine]
// [Initialize engine]
// [Initialize stream]
mkldnn::stream strm(eng);
// [Initialize stream]
// [memory alloc]
memory::dims tz_dims = { 2, 3, 4, 5 };
const size_t N = std::accumulate(tz_dims.begin(), tz_dims.end(), (size_t)1,
std::multiplies<size_t>());
memory mem(mem_d, eng);
// [memory alloc]
// [ocl kernel]
const char *ocl_code
= "__kernel void init(__global float *data) {"
" int id = get_global_id(0);"
" data[id] = (id % 2) ? -id : id;"
"}";
// [ocl kernel]
// [oclkernel create]
const char *kernel_name = "init";
cl_kernel ocl_init_kernel = create_init_opencl_kernel(
eng.get_ocl_context(), kernel_name, ocl_code);
// [oclkernel create]
// [oclexecution]
cl_mem ocl_buf = mem.get_ocl_mem_object();
OCL_CHECK(clSetKernelArg(ocl_init_kernel, 0, sizeof(ocl_buf), &ocl_buf));
cl_command_queue ocl_queue = strm.get_ocl_command_queue();
OCL_CHECK(clEnqueueNDRangeKernel(ocl_queue, ocl_init_kernel, 1, nullptr, &N,
nullptr, 0, nullptr, nullptr));
// [oclexecution]
// [relu creation]
algorithm::eltwise_relu, mem_d, 0.0f);
auto relu_pd = eltwise_forward::primitive_desc(relu_d, eng);
auto relu = eltwise_forward(relu_pd);
// [relu creation]
// [relu exec]
relu.execute(strm, { { MKLDNN_ARG_SRC, mem }, { MKLDNN_ARG_DST, mem } });
strm.wait();
// [relu exec]
// [Check the results]
float *mapped_data = mem.map_data<float>();
for (size_t i = 0; i < N; i++) {
float expected = (i % 2) ? 0.0f : (float)i;
if (mapped_data[i] != expected)
throw std::string("Unexpected output, find a negative value after the ReLU execution");
}
mem.unmap_data(mapped_data);
// [Check the results]
OCL_CHECK(clReleaseKernel(ocl_init_kernel));
}
// [Main]
int main(int argc, char **argv) {
try {
gpu_opencl_interop_tutorial();
} catch (mkldnn::error &e) {
std::cerr << "Intel MKL-DNN error: " << e.what() << std::endl
<< "Error status: " << mkldnn_status2str(e.status) << std::endl;
return 1;
} catch (std::string &e) {
std::cerr << "Error in the example: " << e << std::endl;
return 2;
}
std::cout << "Example passes" << std::endl;
return 0;
}
// [Main]