MatMul Tutorial: weights decompression¶
C++ API example demonstrating how one can use MatMul with compressed weights.
Concepts:
Asymmetric quantization
Zero points: dnnl::primitive_attr::set_zero_points()
Create primitive once, use multiple times
Weights pre-packing: use dnnl::memory::format_tag::any
Assumptions:
The shape of the weights (matrix \(B(K, N)\)) is known in advance, the data type is
int8_t
and shifted from 0 (i.e. the zero point is not 0).The source matrix \(A\) and destination matrix \(C\) have floating point data type.
Scaling (re-quantization) factor specified at run-time only.
Since the shape of weights is known in advance, the MatMul weights can be created with format tag dnnl::memory::format_tag::any to enable the library to choose the most appropriate layout for best performance.
Warning
The format tag dnnl::memory::format_tag::any doesn’t work for memory descriptors that have one or more unknown dimensions and/or strides.
/******************************************************************************* * Copyright 2023-2024 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include <cassert> #include <cctype> #include <cmath> #include <cstdio> #include <iostream> #include <random> #include <stdexcept> #include <vector> #include "oneapi/dnnl/dnnl.hpp" #include "example_utils.hpp" using namespace dnnl; namespace { void init_vector(std::vector<float> &v) { std::mt19937 gen; std::uniform_real_distribution<float> u(0, 1); for (auto &e : v) e = u(gen); } } // namespace int number_of_runs = 1; // Create a MatMul primitive descriptor for the following op: // C_f32 = A_f32 * (B_s8 - zp_B) * sc_B[:] // // Here: // - Matrices A and C are of f32 data type. // - The B matrix is stored as int8_t, its zero point is zp_B, and all its // dimensions are known. This matrix can be a matrix of compressed weights // in an MLP topology. // - The weights scaling values are not known at the primitive creation time. matmul::primitive_desc matmul_pd_create( int64_t M, int64_t N, int64_t K, int64_t G, const engine &eng) { memory::desc a_md({M, K}, memory::data_type::f32, {K, 1}); // M x K layout memory::desc b_md({K, N}, memory::data_type::s8, memory::format_tag::any); memory::desc c_md({M, N}, memory::data_type::f32, {N, 1}); // M x N layout // Create attributes and indicate that the alpha and zero points are // runtime parameters primitive_attr attr; // Set scales with multiple scales along K and N dimensions and with groups along K. attr.set_scales(DNNL_ARG_WEIGHTS, /* mask */ (1 << 0) + (1 << 1), {G, 1}, memory::data_type::f32); // Set a single zero point with s8 data type. attr.set_zero_points( DNNL_ARG_WEIGHTS, /* mask */ 0, {}, memory::data_type::s8); // Set fpmath mode with `apply_to_int=true` to apply fpmath mode behavior to // integral primitives (in this example, matmul). attr.set_fpmath_mode(fpmath_mode::bf16, true); // Create a MatMul primitive descriptor return matmul::primitive_desc(eng, a_md, b_md, c_md, attr); } void prepare_input(memory &A_f32_mem, memory &sc_B_mem, memory &zp_B_mem) { int64_t M = A_f32_mem.get_desc().get_dims()[0]; int64_t N = sc_B_mem.get_desc().get_dims()[0]; int64_t K = A_f32_mem.get_desc().get_dims()[1]; int64_t NUM_G = sc_B_mem.get_desc().get_dims()[1]; std::vector<float> A_f32(M * K); init_vector(A_f32); std::vector<float> sc_B(NUM_G * N); init_vector(sc_B); int8_t zp_B = 2; write_to_dnnl_memory(A_f32.data(), A_f32_mem); write_to_dnnl_memory(&zp_B, zp_B_mem); write_to_dnnl_memory(sc_B.data(), sc_B_mem); } void infer(const matmul &matmul_p, int64_t M, int64_t N, int64_t K, int64_t G, const memory &B_s8_mem, const engine &eng) { // input of the current layer / operation memory A_f32_mem({{M, K}, memory::data_type::f32, {K, 1}}, eng); // De-quantization parameters (eg. Scale and Shift) const int64_t n_groups = K / G; memory sc_B_mem({{N, n_groups}, memory::data_type::f32, {1, N}}, eng); memory zp_B_mem({{1}, memory::data_type::s8, {1}}, eng); // the function below fills dnnl::memory with some values // these memories, typically, come from the previous layers / operations // with meaningful data inside prepare_input(A_f32_mem, sc_B_mem, zp_B_mem); // output - no initialization required memory C_f32_mem({{M, N}, memory::data_type::f32, {N, 1}}, eng); stream s(eng); for (int run = 0; run < number_of_runs; ++run) matmul_p.execute(s, {{DNNL_ARG_SRC, A_f32_mem}, {DNNL_ARG_WEIGHTS, B_s8_mem}, {DNNL_ARG_DST, C_f32_mem}, {DNNL_ARG_ATTR_SCALES | DNNL_ARG_WEIGHTS, sc_B_mem}, {DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_WEIGHTS, zp_B_mem}}); s.wait(); } void weights_decompression_matmul(engine::kind engine_kind) { engine eng(engine_kind, 0); const int64_t K = 96; const int64_t N = 1000; const int64_t M = 100; // Quantization Group size for scales const int64_t G = K / 2; auto matmul_pd = matmul_pd_create(M, N, K, G, eng); // Original weights stored as float in a known format std::vector<float> B_f32(K * N); init_vector(B_f32); // Pre-packed weights stored as int8_t memory B_s8_mem(matmul_pd.weights_desc(), eng); { stream s(eng); memory B_f32_mem( {{K, N}, memory::data_type::f32, memory::format_tag::ab}, eng); write_to_dnnl_memory(B_f32.data(), B_f32_mem); reorder(B_f32_mem, B_s8_mem).execute(s, B_f32_mem, B_s8_mem); s.wait(); } matmul matmul_p(matmul_pd); infer(matmul_p, M, N, K, G, B_s8_mem, eng); } int main(int argc, char **argv) { engine::kind engine_kind = parse_engine_kind(argc, argv); // GPU is not supported if (engine_kind != engine::kind::cpu) return 0; return handle_example_errors(weights_decompression_matmul, engine_kind); }