Reorder Primitive ExampleΒΆ
This C++ API demonstrates how to create and execute a Reorder primitive.
Key optimizations included in this example:
Primitive attributes for output scaling.
/******************************************************************************* * Copyright 2020-2022 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include <algorithm> #include <cmath> #include <iostream> #include <string> #include <vector> #include "example_utils.hpp" #include "oneapi/dnnl/dnnl.hpp" using namespace dnnl; using tag = memory::format_tag; using dt = memory::data_type; void reorder_example(dnnl::engine::kind engine_kind) { // Create execution dnnl::engine. dnnl::engine engine(engine_kind, 0); // Create dnnl::stream. dnnl::stream engine_stream(engine); // Tensor dimensions. const memory::dim N = 3, // batch size IC = 3, // channels IH = 227, // tensor height IW = 227; // tensor width // Source (src) and destination (dst) tensors dimensions. memory::dims src_dims = {N, IC, IH, IW}; // Allocate buffers. std::vector<float> src_data(product(src_dims)); std::vector<int8_t> dst_data(product(src_dims)); // Initialize src tensor. std::generate(src_data.begin(), src_data.end(), []() { static int i = 0; return std::cos(i++ / 10.f); }); // Create memory descriptors and memory objects for src and dst. auto src_md = memory::desc(src_dims, dt::f32, tag::nchw); auto dst_md = memory::desc(src_dims, dt::s8, tag::nhwc); auto src_mem = memory(src_md, engine); auto dst_mem = memory(dst_md, engine); // Write data to memory object's handle. write_to_dnnl_memory(src_data.data(), src_mem); // Per-channel scales. std::vector<float> scales(IC); std::generate(scales.begin(), scales.end(), []() { static int i = 0; return 64.f + 5.f * i++; }); // Dimension of the dst tensor where the output scales will be applied const int ic_dim = 1; // Create primitive post-ops (per-channel output scales) primitive_attr reorder_attr; reorder_attr.set_scales_mask(DNNL_ARG_DST, 1 << ic_dim); auto dst_scales_mem = memory({{IC}, dt::f32, tag::x}, engine); write_to_dnnl_memory(scales.data(), dst_scales_mem); // Create primitive descriptor. auto reorder_pd = reorder::primitive_desc( engine, src_md, engine, dst_md, reorder_attr); // Create the primitive. auto reorder_prim = reorder(reorder_pd); // Primitive arguments. std::unordered_map<int, memory> reorder_args; reorder_args.insert({DNNL_ARG_SRC, src_mem}); reorder_args.insert({DNNL_ARG_DST, dst_mem}); reorder_args.insert({DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, dst_scales_mem}); // Primitive execution: reorder with scaled sum. reorder_prim.execute(engine_stream, reorder_args); // Wait for the computation to finalize. engine_stream.wait(); // Read data from memory object's handle. read_from_dnnl_memory(dst_data.data(), dst_mem); } int main(int argc, char **argv) { return handle_example_errors( reorder_example, parse_engine_kind(argc, argv)); }