Matmul Primitive ExampleΒΆ
This C++ API example demonstrates how to create and execute a MatMul primitive.
Key optimizations included in this example:
Primitive attributes with fused post-ops.
/******************************************************************************* * Copyright 2020-2022 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include <algorithm> #include <cmath> #include <iostream> #include <string> #include <vector> #include "example_utils.hpp" #include "oneapi/dnnl/dnnl.hpp" using namespace dnnl; using tag = memory::format_tag; using dt = memory::data_type; void matmul_example(dnnl::engine::kind engine_kind) { // Create execution dnnl::engine. dnnl::engine engine(engine_kind, 0); // Create dnnl::stream. dnnl::stream engine_stream(engine); // Tensor dimensions. const memory::dim MB = 3, // batch size M = 128, K = 256, N = 512; // Source (src), weights, bias, and destination (dst) tensors dimensions. memory::dims src_dims = {MB, M, K}; memory::dims weights_dims = {MB, K, N}; memory::dims bias_dims = {1, 1, N}; memory::dims dst_dims = {MB, M, N}; // Allocate buffers. std::vector<float> src_data(product(src_dims)); std::vector<float> weights_data(product(weights_dims)); std::vector<float> bias_data(product(bias_dims)); std::vector<float> dst_data(product(dst_dims)); // Initialize src, weights, bias. std::generate(src_data.begin(), src_data.end(), []() { static int i = 0; return std::cos(i++ / 10.f); }); std::generate(weights_data.begin(), weights_data.end(), []() { static int i = 0; return std::sin(i++ * 2.f); }); std::generate(bias_data.begin(), bias_data.end(), []() { static int i = 0; return std::tanh(float(i++)); }); // Create memory descriptors and memory objects for src, weights, bias, and // dst. auto src_md = memory::desc(src_dims, dt::f32, tag::abc); auto weights_md = memory::desc(weights_dims, dt::f32, tag::abc); auto bias_md = memory::desc(bias_dims, dt::f32, tag::abc); auto dst_md = memory::desc(dst_dims, dt::f32, tag::abc); auto src_mem = memory(src_md, engine); auto weights_mem = memory(weights_md, engine); auto bias_mem = memory(bias_md, engine); auto dst_mem = memory(dst_md, engine); // Write data to memory object's handles. write_to_dnnl_memory(src_data.data(), src_mem); write_to_dnnl_memory(weights_data.data(), weights_mem); write_to_dnnl_memory(bias_data.data(), bias_mem); // Create primitive post-ops (ReLU). const float alpha = 0.f; const float beta = 0.f; post_ops matmul_ops; matmul_ops.append_eltwise(algorithm::eltwise_relu, alpha, beta); primitive_attr matmul_attr; matmul_attr.set_post_ops(matmul_ops); // Create primitive descriptor. auto matmul_pd = matmul::primitive_desc( engine, src_md, weights_md, bias_md, dst_md, matmul_attr); // Create the primitive. auto matmul_prim = matmul(matmul_pd); // Primitive arguments. std::unordered_map<int, memory> matmul_args; matmul_args.insert({DNNL_ARG_SRC, src_mem}); matmul_args.insert({DNNL_ARG_WEIGHTS, weights_mem}); matmul_args.insert({DNNL_ARG_BIAS, bias_mem}); matmul_args.insert({DNNL_ARG_DST, dst_mem}); // Primitive execution: matrix multiplication with ReLU. matmul_prim.execute(engine_stream, matmul_args); // Wait for the computation to finalize. engine_stream.wait(); // Read data from memory object's handle. read_from_dnnl_memory(dst_data.data(), dst_mem); } int main(int argc, char **argv) { return handle_example_errors(matmul_example, parse_engine_kind(argc, argv)); }