Linear-Before-Reset GRU RNN Primitive ExampleΒΆ
This C++ API example demonstrates how to create and execute a Linear-Before-Reset GRU RNN primitive in forward training propagation mode.
Key optimizations included in this example:
Creation of optimized memory format from the primitive descriptor.
/******************************************************************************* * Copyright 2024 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include <algorithm> #include <cmath> #include <iostream> #include <string> #include <vector> #include "dnnl.hpp" #include "example_utils.hpp" using namespace dnnl; using tag = memory::format_tag; using dt = memory::data_type; void lbr_gru_example(dnnl::engine::kind engine_kind) { // Create execution dnnl::engine. dnnl::engine engine(engine_kind, 0); // Create dnnl::stream. dnnl::stream engine_stream(engine); // Tensor dimensions. const memory::dim N = 2, // batch size T = 3, // time steps IC = 2, // src channels OC = 3, // dst channels G = 3, // gates L = 1, // layers D = 1, // directions E = 1; // extra Bias number. Extra Bias for u' gate // Source (src), weights, bias, attention, and destination (dst) tensors // dimensions. memory::dims src_dims = {T, N, IC}; memory::dims weights_layer_dims = {L, D, IC, G, OC}; memory::dims weights_iter_dims = {L, D, OC, G, OC}; memory::dims bias_dims = {L, D, G + E, OC}; memory::dims dst_layer_dims = {T, N, OC}; memory::dims dst_iter_dims = {L, D, N, OC}; // Allocate buffers. std::vector<float> src_layer_data(product(src_dims)); std::vector<float> weights_layer_data(product(weights_layer_dims)); std::vector<float> weights_iter_data(product(weights_iter_dims)); std::vector<float> bias_data(product(bias_dims)); std::vector<float> dst_layer_data(product(dst_layer_dims)); std::vector<float> dst_iter_data(product(dst_iter_dims)); // Initialize src, weights, and bias tensors. std::generate(src_layer_data.begin(), src_layer_data.end(), []() { static int i = 0; return std::cos(i++ / 10.f); }); std::generate(weights_layer_data.begin(), weights_layer_data.end(), []() { static int i = 0; return std::sin(i++ * 2.f); }); std::generate(weights_iter_data.begin(), weights_iter_data.end(), []() { static int i = 0; return std::sin(i++ * 2.f); }); std::generate(bias_data.begin(), bias_data.end(), []() { static int i = 0; return std::tanh(float(i++)); }); // Create memory descriptors and memory objects for src, bias, and dst. auto src_layer_md = memory::desc(src_dims, dt::f32, tag::tnc); auto bias_md = memory::desc(bias_dims, dt::f32, tag::ldgo); auto dst_layer_md = memory::desc(dst_layer_dims, dt::f32, tag::tnc); auto src_layer_mem = memory(src_layer_md, engine); auto bias_mem = memory(bias_md, engine); auto dst_layer_mem = memory(dst_layer_md, engine); // Create memory objects for weights using user's memory layout. In this // example, LDIGO (num_layers, num_directions, input_channels, num_gates, // output_channels) is assumed. auto user_weights_layer_mem = memory({weights_layer_dims, dt::f32, tag::ldigo}, engine); auto user_weights_iter_mem = memory({weights_iter_dims, dt::f32, tag::ldigo}, engine); // Write data to memory object's handle. // For GRU cells, the gates order is update, reset and output // gate except the bias. For the bias tensor, the gates order is // u, r, o and u' gate. write_to_dnnl_memory(src_layer_data.data(), src_layer_mem); write_to_dnnl_memory(bias_data.data(), bias_mem); write_to_dnnl_memory(weights_layer_data.data(), user_weights_layer_mem); write_to_dnnl_memory(weights_iter_data.data(), user_weights_iter_mem); // Create memory descriptors for weights with format_tag::any. This enables // the lbr_gru primitive to choose the optimized memory layout. auto weights_layer_md = memory::desc(weights_layer_dims, dt::f32, tag::any); auto weights_iter_md = memory::desc(weights_iter_dims, dt::f32, tag::any); // Optional memory descriptors for recurrent data. // Default memory descriptor for initial hidden states of the GRU cells auto src_iter_md = memory::desc(); auto dst_iter_md = memory::desc(); // Create primitive descriptor. auto lbr_gru_pd = lbr_gru_forward::primitive_desc(engine, prop_kind::forward_training, rnn_direction::unidirectional_left2right, src_layer_md, src_iter_md, weights_layer_md, weights_iter_md, bias_md, dst_layer_md, dst_iter_md); // For now, assume that the weights memory layout generated by the primitive // and the ones provided by the user are identical. auto weights_layer_mem = user_weights_layer_mem; auto weights_iter_mem = user_weights_iter_mem; // Reorder the data in case the weights memory layout generated by the // primitive and the one provided by the user are different. In this case, // we create additional memory objects with internal buffers that will // contain the reordered data. if (lbr_gru_pd.weights_desc() != user_weights_layer_mem.get_desc()) { weights_layer_mem = memory(lbr_gru_pd.weights_desc(), engine); reorder(user_weights_layer_mem, weights_layer_mem) .execute(engine_stream, user_weights_layer_mem, weights_layer_mem); } if (lbr_gru_pd.weights_iter_desc() != user_weights_iter_mem.get_desc()) { weights_iter_mem = memory(lbr_gru_pd.weights_iter_desc(), engine); reorder(user_weights_iter_mem, weights_iter_mem) .execute( engine_stream, user_weights_iter_mem, weights_iter_mem); } // Create the memory objects from the primitive descriptor. A workspace is // also required for Linear-Before-Reset GRU RNN. // NOTE: Here, the workspace is required for later usage in backward // propagation mode. auto src_iter_mem = memory(lbr_gru_pd.src_iter_desc(), engine); auto dst_iter_mem = memory(lbr_gru_pd.dst_iter_desc(), engine); auto workspace_mem = memory(lbr_gru_pd.workspace_desc(), engine); // Create the primitive. auto lbr_gru_prim = lbr_gru_forward(lbr_gru_pd); // Primitive arguments std::unordered_map<int, memory> lbr_gru_args; lbr_gru_args.insert({DNNL_ARG_SRC_LAYER, src_layer_mem}); lbr_gru_args.insert({DNNL_ARG_WEIGHTS_LAYER, weights_layer_mem}); lbr_gru_args.insert({DNNL_ARG_WEIGHTS_ITER, weights_iter_mem}); lbr_gru_args.insert({DNNL_ARG_BIAS, bias_mem}); lbr_gru_args.insert({DNNL_ARG_DST_LAYER, dst_layer_mem}); lbr_gru_args.insert({DNNL_ARG_SRC_ITER, src_iter_mem}); lbr_gru_args.insert({DNNL_ARG_DST_ITER, dst_iter_mem}); lbr_gru_args.insert({DNNL_ARG_WORKSPACE, workspace_mem}); // Primitive execution: lbr_gru. lbr_gru_prim.execute(engine_stream, lbr_gru_args); // Wait for the computation to finalize. engine_stream.wait(); // Read data from memory object's handle. read_from_dnnl_memory(dst_layer_data.data(), dst_layer_mem); } int main(int argc, char **argv) { return handle_example_errors( lbr_gru_example, parse_engine_kind(argc, argv)); }