cpu_getting_started.cppΒΆ
This is an example to demonstrate how to build a simple graph and run it on CPU. Annotated version: Getting started on CPU with Graph API
This is an example to demonstrate how to build a simple graph and run it on CPU. Annotated version: Getting started on CPU with Graph API
/******************************************************************************* * Copyright 2023-2024 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ //[Headers and namespace] #include <iostream> #include <memory> #include <vector> #include <unordered_map> #include <unordered_set> #include <assert.h> #include "oneapi/dnnl/dnnl_graph.hpp" #include "example_utils.hpp" #include "graph_example_utils.hpp" using namespace dnnl::graph; using data_type = logical_tensor::data_type; using layout_type = logical_tensor::layout_type; using dim = logical_tensor::dim; using dims = logical_tensor::dims; //[Headers and namespace] void cpu_getting_started_tutorial() { dim N = 8, IC = 3, OC1 = 96, OC2 = 96; dim IH = 225, IW = 225, KH1 = 11, KW1 = 11, KH2 = 1, KW2 = 1; dims conv0_input_dims {N, IC, IH, IW}; dims conv0_weight_dims {OC1, IC, KH1, KW1}; dims conv0_bias_dims {OC1}; dims conv1_weight_dims {OC1, OC2, KH2, KW2}; dims conv1_bias_dims {OC2}; //[Create conv's logical tensor] logical_tensor conv0_src_desc {0, data_type::f32}; logical_tensor conv0_weight_desc {1, data_type::f32}; logical_tensor conv0_dst_desc {2, data_type::f32}; //[Create conv's logical tensor] //[Create first conv] op conv0(0, op::kind::Convolution, {conv0_src_desc, conv0_weight_desc}, {conv0_dst_desc}, "conv0"); conv0.set_attr<dims>(op::attr::strides, {4, 4}); conv0.set_attr<dims>(op::attr::pads_begin, {0, 0}); conv0.set_attr<dims>(op::attr::pads_end, {0, 0}); conv0.set_attr<dims>(op::attr::dilations, {1, 1}); conv0.set_attr<int64_t>(op::attr::groups, 1); conv0.set_attr<std::string>(op::attr::data_format, "NCX"); conv0.set_attr<std::string>(op::attr::weights_format, "OIX"); //[Create first conv] //[Create first bias_add] logical_tensor conv0_bias_desc {3, data_type::f32}; logical_tensor conv0_bias_add_dst_desc { 4, data_type::f32, layout_type::undef}; op conv0_bias_add(1, op::kind::BiasAdd, {conv0_dst_desc, conv0_bias_desc}, {conv0_bias_add_dst_desc}, "conv0_bias_add"); conv0_bias_add.set_attr<std::string>(op::attr::data_format, "NCX"); //[Create first bias_add] //[Create first relu] logical_tensor relu0_dst_desc {5, data_type::f32}; op relu0(2, op::kind::ReLU, {conv0_bias_add_dst_desc}, {relu0_dst_desc}, "relu0"); //[Create first relu] //[Create second conv] logical_tensor conv1_weight_desc {6, data_type::f32}; logical_tensor conv1_dst_desc {7, data_type::f32}; op conv1(3, op::kind::Convolution, {relu0_dst_desc, conv1_weight_desc}, {conv1_dst_desc}, "conv1"); conv1.set_attr<dims>(op::attr::strides, {1, 1}); conv1.set_attr<dims>(op::attr::pads_begin, {0, 0}); conv1.set_attr<dims>(op::attr::pads_end, {0, 0}); conv1.set_attr<dims>(op::attr::dilations, {1, 1}); conv1.set_attr<int64_t>(op::attr::groups, 1); conv1.set_attr<std::string>(op::attr::data_format, "NCX"); conv1.set_attr<std::string>(op::attr::weights_format, "OIX"); //[Create second conv] //[Create second bias_add] logical_tensor conv1_bias_desc {8, data_type::f32}; logical_tensor conv1_bias_add_dst_desc {9, data_type::f32}; op conv1_bias_add(4, op::kind::BiasAdd, {conv1_dst_desc, conv1_bias_desc}, {conv1_bias_add_dst_desc}, "conv1_bias_add"); conv1_bias_add.set_attr<std::string>(op::attr::data_format, "NCX"); //[Create second bias_add] //[Create second relu] logical_tensor relu1_dst_desc {10, data_type::f32}; op relu1(5, op::kind::ReLU, {conv1_bias_add_dst_desc}, {relu1_dst_desc}, "relu1"); //[Create second relu] //[Create graph and add ops] graph g(dnnl::engine::kind::cpu); g.add_op(conv0); g.add_op(conv0_bias_add); g.add_op(relu0); g.add_op(conv1); g.add_op(conv1_bias_add); g.add_op(relu1); //[Create graph and add ops] //[Finalize graph] g.finalize(); //[Finalize graph] //[Get partition] auto partitions = g.get_partitions(); //[Get partition] // Check partitioning results to ensure the examples works. Users do // not need to follow this step. assert(partitions.size() == 2); //[Create engine] allocator alloc {}; dnnl::engine eng = make_engine_with_allocator(dnnl::engine::kind::cpu, 0, alloc); //[Create engine] //[Create stream] dnnl::stream strm {eng}; //[Create stream] // Mapping from logical tensor id to output tensors // used to the connection relationship between partitions (e.g partition 0's // output tensor is fed into partition 1) std::unordered_map<size_t, tensor> global_outputs_ts_map; // Memory buffers bound to the partition input/output tensors // that helps manage the lifetime of these tensors std::vector<std::shared_ptr<void>> data_buffer; // Mapping from id to queried logical tensor from compiled partition // used to record the logical tensors that are previously enabled with // ANY layout std::unordered_map<size_t, logical_tensor> id_to_queried_logical_tensors; // This is a helper function which helps decide which logical tensor is // needed to be set with `dnnl::graph::logical_tensor::layout_type::any` // layout. // This function is not a part to Graph API, but similar logic is // essential for Graph API integration to achieve best performance. // Typically, users need implement the similar logic in their code. std::unordered_set<size_t> ids_with_any_layout; set_any_layout(partitions, ids_with_any_layout); // Mapping from logical tensor id to the concrete shapes. // In practical usage, concrete shapes and layouts are not given // until compilation stage, hence need this mapping to mock the step. std::unordered_map<size_t, dims> concrete_shapes {{0, conv0_input_dims}, {1, conv0_weight_dims}, {3, conv0_bias_dims}, {6, conv1_weight_dims}, {8, conv1_bias_dims}}; // Compile and execute the partitions, including the following steps: // // 1. Update the input/output logical tensors with concrete shape and layout // 2. Compile the partition // 3. Update the output logical tensors with queried ones after compilation // 4. Allocate memory and bind the data buffer for the partition // 5. Execute the partition // // Although they are not part of the APIs, these steps are essential for // the integration of Graph API., hence users need to implement similar // logic. for (const auto &partition : partitions) { if (!partition.is_supported()) { std::cout << "cpu_get_started: Got unsupported partition, users need " "handle the operators by themselves." << std::endl; continue; } std::vector<logical_tensor> inputs = partition.get_input_ports(); std::vector<logical_tensor> outputs = partition.get_output_ports(); // Update input logical tensors with concrete shape and layout for (auto &input : inputs) { const auto id = input.get_id(); // If the tensor is an output of another partition, // use the cached logical tensor if (id_to_queried_logical_tensors.find(id) != id_to_queried_logical_tensors.end()) input = id_to_queried_logical_tensors[id]; else // Create logical tensor with strided layout input = logical_tensor {id, input.get_data_type(), concrete_shapes[id], layout_type::strided}; } // Update output logical tensors with concrete shape and layout for (auto &output : outputs) { const auto id = output.get_id(); output = logical_tensor {id, output.get_data_type(), DNNL_GRAPH_UNKNOWN_NDIMS, // set output dims to unknown ids_with_any_layout.count(id) ? layout_type::any : layout_type::strided}; } //[Compile partition] compiled_partition cp = partition.compile(inputs, outputs, eng); //[Compile partition] // Update output logical tensors with queried one for (auto &output : outputs) { const auto id = output.get_id(); output = cp.query_logical_tensor(id); id_to_queried_logical_tensors[id] = output; } // Allocate memory for the partition, and bind the data buffers with // input and output logical tensors std::vector<tensor> inputs_ts, outputs_ts; allocate_graph_mem(inputs_ts, inputs, data_buffer, global_outputs_ts_map, eng, /*is partition input=*/true); allocate_graph_mem(outputs_ts, outputs, data_buffer, global_outputs_ts_map, eng, /*is partition input=*/false); //[Execute compiled partition] cp.execute(strm, inputs_ts, outputs_ts); //[Execute compiled partition] } // Wait for all compiled partition's execution finished strm.wait(); std::cout << "Graph:" << std::endl << " [conv0_src] [conv0_wei]" << std::endl << " \\ /" << std::endl << " conv0" << std::endl << " \\ [conv0_bias_src1]" << std::endl << " \\ /" << std::endl << " conv0_bias_add" << std::endl << " |" << std::endl << " relu0" << std::endl << " \\ [conv1_wei]" << std::endl << " \\ /" << std::endl << " conv1" << std::endl << " \\ [conv1_bias_src1]" << std::endl << " \\ /" << std::endl << " conv1_bias_add" << std::endl << " |" << std::endl << " relu1" << std::endl << " |" << std::endl << " [relu_dst]" << std::endl << "Note:" << std::endl << " '[]' represents a logical tensor, which refers to " "inputs/outputs of the graph. " << std::endl; } int main(int argc, char **argv) { return handle_example_errors( {engine::kind::cpu}, cpu_getting_started_tutorial); }