oneAPI Deep Neural Network Library (oneDNN)
Performance library for Deep Learning
1.96.0
Sum Primitive Example

This C++ API example demonstrates how to create and execute a Sum primitive.

Key optimizations included in this example:

  • Identical memory formats for source (src) and destination (dst) tensors.
/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm>
#include <cmath>
#include <iostream>
#include <string>
#include <vector>
#include "example_utils.hpp"
using namespace dnnl;
void sum_example(dnnl::engine::kind engine_kind) {
// Create execution dnnl::engine.
dnnl::engine engine(engine_kind, 0);
// Create dnnl::stream.
dnnl::stream engine_stream(engine);
// Tensor dimensions.
const memory::dim N = 3, // batch size
IC = 3, // channels
IH = 227, // tensor height
IW = 227; // tensor width
// Source (src) and destination (dst) tensors dimensions.
memory::dims src_dims = {N, IC, IH, IW};
// Allocate buffers.
std::vector<float> src_data(product(src_dims));
std::vector<float> dst_data(product(src_dims));
// Initialize src.
std::generate(src_data.begin(), src_data.end(), []() {
static int i = 0;
return std::cos(i++ / 10.f);
});
// Number of src tensors.
const int num_src = 10;
// Scaling factors.
std::vector<float> scales(num_src);
std::generate(
scales.begin(), scales.end(), [](int n = 0) { return sin(n); });
// Create an array of memory descriptors and memory objects for src tensors.
std::vector<memory::desc> src_md;
std::vector<memory> src_mem;
for (int n = 0; n < num_src; ++n) {
auto md = memory::desc(src_dims, dt::f32, tag::nchw);
auto mem = memory(md, engine);
// Write data to memory object's handle.
write_to_dnnl_memory(src_data.data(), mem);
src_md.push_back(md);
src_mem.push_back(mem);
}
// Create primitive descriptor.
auto sum_pd = sum::primitive_desc(scales, src_md, engine);
// Create the primitive.
auto sum_prim = sum(sum_pd);
// Create memory object for dst.
auto dst_mem = memory(sum_pd.dst_desc(), engine);
// Primitive arguments.
std::unordered_map<int, memory> sum_args;
sum_args.insert({DNNL_ARG_DST, dst_mem});
for (int n = 0; n < num_src; ++n) {
sum_args.insert({DNNL_ARG_MULTIPLE_SRC + n, src_mem[n]});
}
// Primitive execution: sum.
sum_prim.execute(engine_stream, sum_args);
// Wait for the computation to finalize.
engine_stream.wait();
// Read data from memory object's handle.
read_from_dnnl_memory(dst_data.data(), dst_mem);
}
int main(int argc, char **argv) {
return handle_example_errors(sum_example, parse_engine_kind(argc, argv));
}