.. index:: pair: page; LSTM RNN Primitive Example .. _doxid-lstm_example_cpp: LSTM RNN Primitive Example ========================== This C++ API example demonstrates how to create and execute an :ref:`LSTM RNN ` primitive in forward training propagation mode. Key optimizations included in this example: * Creation of optimized memory format from the primitive descriptor. .. ref-code-block:: cpp /******************************************************************************* * Copyright 2020 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include #include #include #include #include #include "example_utils.hpp" #include "oneapi/dnnl/dnnl.hpp" using namespace :ref:`dnnl `; using :ref:`tag ` = :ref:`memory::format_tag `; using :ref:`dt ` = :ref:`memory::data_type `; void lstm_example(:ref:`dnnl::engine::kind ` engine_kind) { // Create execution dnnl::engine. :ref:`dnnl::engine ` :ref:`engine `(engine_kind, 0); // Create dnnl::stream. :ref:`dnnl::stream ` engine_stream(:ref:`engine `); // Tensor dimensions. const :ref:`memory::dim ` N = 26, // batch size T = 6, // time steps C = 12, // channels G = 4, // gates L = 4, // layers D = 1; // directions // Source (src), weights, bias, and destination (dst) tensors // dimensions. :ref:`memory::dims ` src_dims = {T, N, C}; :ref:`memory::dims ` weights_dims = {L, D, C, G, C}; :ref:`memory::dims ` bias_dims = {L, D, G, C}; :ref:`memory::dims ` dst_dims = {T, N, C}; // Allocate buffers. std::vector src_layer_data(product(src_dims)); std::vector weights_layer_data(product(weights_dims)); std::vector weights_iter_data(product(weights_dims)); std::vector dst_layer_data(product(dst_dims)); std::vector bias_data(product(bias_dims)); // Initialize src, weights, and bias tensors. std::generate(src_layer_data.begin(), src_layer_data.end(), []() { static int i = 0; return std::cos(i++ / 10.f); }); std::generate(weights_layer_data.begin(), weights_layer_data.end(), []() { static int i = 0; return std::sin(i++ * 2.f); }); std::generate(bias_data.begin(), bias_data.end(), []() { static int i = 0; return std::tanh(i++); }); // Create memory descriptors and memory objects for src, bias, and dst. auto src_layer_md = :ref:`memory::desc `(src_dims, dt::f32, tag::tnc); auto bias_md = :ref:`memory::desc `(bias_dims, dt::f32, tag::ldgo); auto dst_layer_md = :ref:`memory::desc `(dst_dims, dt::f32, tag::tnc); auto src_layer_mem = :ref:`memory `(src_layer_md, :ref:`engine `); auto bias_mem = :ref:`memory `(bias_md, :ref:`engine `); auto dst_layer_mem = :ref:`memory `(dst_layer_md, :ref:`engine `); // Create memory objects for weights using user's memory layout. In this // example, LDIGO is assumed. auto user_weights_layer_mem = :ref:`memory `({weights_dims, dt::f32, tag::ldigo}, :ref:`engine `); auto user_weights_iter_mem = :ref:`memory `({weights_dims, dt::f32, tag::ldigo}, :ref:`engine `); // Write data to memory object's handle. write_to_dnnl_memory(src_layer_data.data(), src_layer_mem); write_to_dnnl_memory(bias_data.data(), bias_mem); write_to_dnnl_memory(weights_layer_data.data(), user_weights_layer_mem); write_to_dnnl_memory(weights_iter_data.data(), user_weights_iter_mem); // Create memory descriptors for weights with format_tag::any. This enables // the LSTM primitive to choose the optimized memory layout. auto lstm_weights_layer_md = :ref:`memory::desc `(weights_dims, dt::f32, :ref:`tag::any `); auto lstm_weights_iter_md = :ref:`memory::desc `(weights_dims, dt::f32, :ref:`tag::any `); // Optional memory descriptors for recurrent data. auto src_iter_md = :ref:`memory::desc `(); auto src_iter_c_md = :ref:`memory::desc `(); auto dst_iter_md = :ref:`memory::desc `(); auto dst_iter_c_md = :ref:`memory::desc `(); // Create operation descriptor. auto lstm_desc = :ref:`lstm_forward::desc `(:ref:`prop_kind::forward_training `, :ref:`rnn_direction::unidirectional_left2right `, src_layer_md, src_iter_md, src_iter_c_md, lstm_weights_layer_md, lstm_weights_iter_md, bias_md, dst_layer_md, dst_iter_md, dst_iter_c_md); // Create primitive descriptor. auto lstm_pd = :ref:`lstm_forward::primitive_desc `(lstm_desc, :ref:`engine `); // For now, assume that the weights memory layout generated by the primitive // and the ones provided by the user are identical. auto lstm_weights_layer_mem = user_weights_layer_mem; auto lstm_weights_iter_mem = user_weights_iter_mem; // Reorder the data in case the weights memory layout generated by the // primitive and the one provided by the user are different. In this case, // we create additional memory objects with internal buffers that will // contain the reordered data. if (lstm_pd.weights_desc() != user_weights_layer_mem.get_desc()) { lstm_weights_layer_mem = :ref:`memory `(lstm_pd.weights_desc(), :ref:`engine `); :ref:`reorder `(user_weights_layer_mem, lstm_weights_layer_mem) .:ref:`execute `(engine_stream, user_weights_layer_mem, lstm_weights_layer_mem); } if (lstm_pd.weights_iter_desc() != user_weights_iter_mem.:ref:`get_desc `()) { lstm_weights_iter_mem = :ref:`memory `(lstm_pd.weights_iter_desc(), :ref:`engine `); :ref:`reorder `(user_weights_iter_mem, lstm_weights_iter_mem) .:ref:`execute `(engine_stream, user_weights_iter_mem, lstm_weights_iter_mem); } // Create the memory objects from the primitive descriptor. A workspace is // also required for LSTM. // NOTE: Here, the workspace is required for later usage in backward // propagation mode. auto src_iter_mem = :ref:`memory `(lstm_pd.src_iter_desc(), :ref:`engine `); auto src_iter_c_mem = :ref:`memory `(lstm_pd.src_iter_c_desc(), :ref:`engine `); auto weights_iter_mem = :ref:`memory `(lstm_pd.weights_iter_desc(), :ref:`engine `); auto dst_iter_mem = :ref:`memory `(lstm_pd.dst_iter_desc(), :ref:`engine `); auto dst_iter_c_mem = :ref:`memory `(lstm_pd.dst_iter_c_desc(), :ref:`engine `); auto workspace_mem = :ref:`memory `(lstm_pd.workspace_desc(), :ref:`engine `); // Create the primitive. auto lstm_prim = :ref:`lstm_forward `(lstm_pd); // Primitive arguments std::unordered_map lstm_args; lstm_args.insert({:ref:`DNNL_ARG_SRC_LAYER `, src_layer_mem}); lstm_args.insert({:ref:`DNNL_ARG_WEIGHTS_LAYER `, lstm_weights_layer_mem}); lstm_args.insert({:ref:`DNNL_ARG_WEIGHTS_ITER `, lstm_weights_iter_mem}); lstm_args.insert({:ref:`DNNL_ARG_BIAS `, bias_mem}); lstm_args.insert({:ref:`DNNL_ARG_DST_LAYER `, dst_layer_mem}); lstm_args.insert({:ref:`DNNL_ARG_SRC_ITER `, src_iter_mem}); lstm_args.insert({:ref:`DNNL_ARG_SRC_ITER_C `, src_iter_c_mem}); lstm_args.insert({:ref:`DNNL_ARG_DST_ITER `, dst_iter_mem}); lstm_args.insert({:ref:`DNNL_ARG_DST_ITER_C `, dst_iter_c_mem}); lstm_args.insert({:ref:`DNNL_ARG_WORKSPACE `, workspace_mem}); // Primitive execution: LSTM. lstm_prim.execute(engine_stream, lstm_args); // Wait for the computation to finalize. engine_stream.wait(); // Read data from memory object's handle. read_from_dnnl_memory(dst_layer_data.data(), dst_layer_mem); } int main(int argc, char **argv) { return handle_example_errors(lstm_example, parse_engine_kind(argc, argv)); }