Deep Neural Network Library (DNNL)  1.3.0
Performance library for Deep Learning
getting_started.cpp

This C++ API example demonstrates the basics of the DNNL programming model.

Annotated version: Getting started

/*******************************************************************************
* Copyright 2019-2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cmath>
#include <numeric>
#include <stdexcept>
#include <vector>
#include "dnnl.hpp"
#include "dnnl_debug.h"
#include "example_utils.hpp"
using namespace dnnl;
// [Prologue]
// [Prologue]
void getting_started_tutorial(engine::kind engine_kind) {
// [Initialize engine]
engine eng(engine_kind, 0);
// [Initialize engine]
// [Initialize stream]
stream engine_stream(eng);
// [Initialize stream]
// [Create user's data]
const int N = 1, H = 13, W = 13, C = 3;
// Compute physical strides for each dimension
const int stride_N = H * W * C;
const int stride_H = W * C;
const int stride_W = C;
const int stride_C = 1;
// An auxiliary function that maps logical index to the physical offset
auto offset = [=](int n, int h, int w, int c) {
return n * stride_N + h * stride_H + w * stride_W + c * stride_C;
};
// The image size
const int image_size = N * H * W * C;
// Allocate a buffer for the image
std::vector<float> image(image_size);
// Initialize the image with some values
for (int n = 0; n < N; ++n)
for (int h = 0; h < H; ++h)
for (int w = 0; w < W; ++w)
for (int c = 0; c < C; ++c) {
int off = offset(
n, h, w, c); // Get the physical offset of a pixel
image[off] = -std::cos(off / 10.f);
}
// [Create user's data]
// [Init src_md]
{N, C, H, W}, // logical dims, the order is defined by a primitive
memory::data_type::f32, // tensor's data type
memory::format_tag::nhwc // memory format, NHWC in this case
);
// [Init src_md]
// [Init alt_src_md]
auto alt_src_md = memory::desc(
{N, C, H, W}, // logical dims, the order is defined by a primitive
memory::data_type::f32, // tensor's data type
{stride_N, stride_C, stride_H, stride_W} // the strides
);
// Sanity check: the memory descriptors should be the same
if (src_md != alt_src_md)
throw std::logic_error("Memory descriptor initialization mismatch.");
// [Init alt_src_md]
// [Create memory objects]
// src_mem contains a copy of image after write_to_dnnl_memory function
auto src_mem = memory(src_md, eng);
write_to_dnnl_memory(image.data(), src_mem);
// For dst_mem the library allocates buffer
auto dst_mem = memory(src_md, eng);
// [Create memory objects]
// [Create a ReLU primitive]
// ReLU op descriptor (no engine- or implementation-specific information)
auto relu_d = eltwise_forward::desc(
src_md, // the memory descriptor for an operation to work on
0.f, // alpha parameter means negative slope in case of ReLU
0.f // beta parameter is ignored in case of ReLU
);
// ReLU primitive descriptor, which corresponds to a particular
// implementation in the library
auto relu_pd
= eltwise_forward::primitive_desc(relu_d, // an operation descriptor
eng // an engine the primitive will be created for
);
// ReLU primitive
auto relu = eltwise_forward(relu_pd); // !!! this can take quite some time
// [Create a ReLU primitive]
// [Execute ReLU primitive]
// Execute ReLU (out-of-place)
relu.execute(engine_stream, // The execution stream
{
// A map with all inputs and outputs
{DNNL_ARG_SRC, src_mem}, // Source tag and memory obj
{DNNL_ARG_DST, dst_mem}, // Destination tag and memory obj
});
// Wait the stream to complete the execution
engine_stream.wait();
// [Execute ReLU primitive]
// [Execute ReLU primitive in-place]
// Execute ReLU (in-place)
// relu.execute(engine_stream, {
// {DNNL_ARG_SRC, src_mem},
// {DNNL_ARG_DST, src_mem},
// });
// [Execute ReLU primitive in-place]
// [Check the results]
// Obtain a buffer for the `dst_mem` and cast it to `float *`.
// This is safe since we created `dst_mem` as f32 tensor with known
// memory format.
std::vector<float> relu_image(image_size);
read_from_dnnl_memory(relu_image.data(), dst_mem);
// Check the results
for (int n = 0; n < N; ++n)
for (int h = 0; h < H; ++h)
for (int w = 0; w < W; ++w)
for (int c = 0; c < C; ++c) {
int off = offset(
n, h, w, c); // get the physical offset of a pixel
float expected = image[off] < 0
? 0.f
: image[off]; // expected value
if (relu_image[off] != expected) {
std::cout << "At index(" << n << ", " << c << ", " << h
<< ", " << w << ") expect " << expected
<< " but got " << relu_image[off]
<< std::endl;
throw std::logic_error("Accuracy check failed.");
}
}
// [Check the results]
}
// [Main]
int main(int argc, char **argv) {
int exit_code = 0;
engine::kind engine_kind = parse_engine_kind(argc, argv);
try {
getting_started_tutorial(engine_kind);
} catch (dnnl::error &e) {
std::cout << "DNNL error caught: " << std::endl
<< "\tStatus: " << dnnl_status2str(e.status) << std::endl
<< "\tMessage: " << e.what() << std::endl;
exit_code = 1;
} catch (std::string &e) {
std::cout << "Error in the example: " << e << "." << std::endl;
exit_code = 2;
}
std::cout << "Example " << (exit_code ? "failed" : "passed") << " on "
<< engine_kind2str_upper(engine_kind) << "." << std::endl;
return exit_code;
}
// [Main]