Users are free to choose between these two options, as well as any intermediate ones (e.g., specifying some of the parameters at creation time while leaving the others until execution time). This enables balancing between flexibility and performance.
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <iostream>
#include <random>
#include <stdexcept>
#include <vector>
#include "example_utils.hpp"
namespace {
void init_vector(std::vector<float> &v) {
std::mt19937 gen;
std::uniform_real_distribution<float> u(-1, 1);
for (auto &e : v)
e = u(gen);
}
int compare_vectors(const std::vector<float> &v1, const std::vector<float> &v2,
int64_t K, const char *message) {
double v1_l2 = 0, diff_l2 = 0;
for (size_t n = 0; n < v1.size(); ++n) {
float diff = v1[n] - v2[n];
v1_l2 += v1[n] * v1[n];
diff_l2 += diff * diff;
}
v1_l2 = std::sqrt(v1_l2);
diff_l2 = std::sqrt(diff_l2);
const double threshold = std::numeric_limits<float>::epsilon()
* std::log(std::max(2., (double)K));
bool ok = diff_l2 <= threshold * v1_l2;
printf("%s\n\tL2 Norms"
"\n\t\tReference matrix:%g\n\t\tError:%g\n\t\tRelative_error:%g\n"
"\tAccuracy check: %s\n",
message, v1_l2, diff_l2, diff_l2 / v1_l2, ok ? "OK" : "FAILED");
return ok ? 0 : 1;
}
}
int number_of_runs = 1;
float fixed_beta = 0.f;
matmul dynamic_matmul_create() {
float beta = fixed_beta;
if (beta != 0.f) {
}
}
void dynamic_matmul_execute(
matmul &matmul_p,
char transA,
char transB,
int64_t M, int64_t N, int64_t K, float alpha, const float *A,
int64_t lda, const float *B, int64_t ldb, float beta, float *C,
int64_t ldc) {
if (beta != fixed_beta)
throw std::logic_error("Run-time beta is not yet supported.");
dims a_strides = tolower(transA) == 'n' ? dims {lda, 1} : dims {1, lda};
dims b_strides = tolower(transB) == 'n' ? dims {ldb, 1} : dims {1, ldb};
s.wait();
}
void static_matmul_create_and_execute(char transA, char transB, int64_t M,
int64_t N, int64_t K, float alpha, const float *A, int64_t lda,
const float *B, int64_t ldb, float beta, float *C, int64_t ldc) {
dims a_strides = tolower(transA) == 'n' ? dims {lda, 1} : dims {1, lda};
dims b_strides = tolower(transB) == 'n' ? dims {ldb, 1} : dims {1, ldb};
if (beta != 0.f) {
attr.set_post_ops(po);
}
memory A_m(a_md, eng, (
void *)A);
memory B_m(b_md, eng, (
void *)B);
memory C_m(c_md, eng, (
void *)C);
s.wait();
}
void sgemm_and_matmul_with_params(char transA, char transB, int64_t M,
int64_t N, int64_t K, float alpha, float beta) {
if (beta != fixed_beta)
throw std::logic_error("Run-time beta is not yet supported.");
std::vector<float> A(M * K);
init_vector(A);
std::vector<float> B(K * N);
init_vector(B);
std::vector<float> C_sgemm(M * N);
init_vector(C_sgemm);
std::vector<float> C_dynamic_matmul = C_sgemm;
std::vector<float> C_static_matmul = C_sgemm;
int64_t lda = tolower(transA) == 'n' ? K : M;
int64_t ldb = tolower(transB) == 'n' ? N : K;
int64_t ldc = N;
for (int run = 0; run < number_of_runs; ++run)
dnnl_sgemm(transA, transB, M, N, K, alpha, A.data(), lda, B.data(), ldb,
beta, C_sgemm.data(), ldc);
auto dynamic_matmul = dynamic_matmul_create();
for (int run = 0; run < number_of_runs; ++run)
dynamic_matmul_execute(dynamic_matmul, transA, transB, M, N, K, alpha,
A.data(), lda, B.data(), ldb, beta, C_dynamic_matmul.data(),
ldc);
for (int run = 0; run < number_of_runs; ++run)
static_matmul_create_and_execute(transA, transB, M, N, K, alpha,
A.data(), lda, B.data(), ldb, beta, C_static_matmul.data(),
ldc);
int rc = 0;
rc |= compare_vectors(
C_sgemm, C_dynamic_matmul, K, "Compare SGEMM vs dynamic MatMul");
if (rc) throw std::logic_error("The resulting matrices diverged too much.");
rc |= compare_vectors(
C_sgemm, C_static_matmul, K, "Compare SGEMM vs static MatMul");
if (rc) throw std::logic_error("The resulting matrices diverged too much.");
}
void sgemm_and_matmul() {
sgemm_and_matmul_with_params('N', 'T', 10, 20, 30, 1.1f, fixed_beta);
}
int main(int argc, char **argv) {
}