Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN)  1.0.4
Performance library for Deep Learning
Getting started on GPU

This C API example demonstrates programming for Intel(R) Processor Graphics with Intel MKL-DNN.

Example code: gpu_getting_started.c

/*******************************************************************************
* Copyright 2019 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include "mkldnn.h"
#define CHECK(f) \
do { \
mkldnn_status_t s = f; \
if (s != mkldnn_success) { \
printf("[%s:%d] error: %s returns %d\n", __FILE__, __LINE__, #f, \
s); \
exit(2); \
} \
} while (0)
size_t product(int n_dims, const mkldnn_dim_t dims[]) {
size_t n_elems = 1;
for (int d = 0; d < n_dims; ++d) {
n_elems *= (size_t)dims[d];
}
return n_elems;
}
void fill(mkldnn_memory_t mem, int n_dims, const mkldnn_dim_t dims[]) {
float *array;
CHECK(mkldnn_memory_map_data(mem, (void **)&array));
const size_t n_elems = product(n_dims, dims);
for (size_t e = 0; e < n_elems; ++e) {
array[e] = e % 7 ? 1.0f : -1.0f;
}
CHECK(mkldnn_memory_unmap_data(mem, array));
}
int find_negative(mkldnn_memory_t mem, int n_dims, const mkldnn_dim_t dims[]) {
int negs = 0;
float *array;
CHECK(mkldnn_memory_map_data(mem, (void **)&array));
const size_t n_elems = product(n_dims, dims);
for (size_t e = 0; e < n_elems; ++e) {
negs += array[e] < 0.0f;
}
CHECK(mkldnn_memory_unmap_data(mem, array));
return negs;
}
int doit() {
mkldnn_engine_t engine_cpu, engine_gpu;
CHECK(mkldnn_engine_create(&engine_cpu, mkldnn_cpu, 0));
CHECK(mkldnn_engine_create(&engine_gpu, mkldnn_gpu, 0));
mkldnn_dim_t tz[4] = { 2, 16, 1, 1 };
mkldnn_memory_desc_t m_cpu_md, m_gpu_md;
&m_cpu_md, 4, tz, mkldnn_f32, mkldnn_nchw));
&m_gpu_md, 4, tz, mkldnn_f32, mkldnn_nchw));
mkldnn_memory_t m_cpu, m_gpu;
&m_cpu, &m_cpu_md, engine_cpu, MKLDNN_MEMORY_ALLOCATE));
&m_gpu, &m_gpu_md, engine_gpu, MKLDNN_MEMORY_ALLOCATE));
fill(m_cpu, 4, tz);
if (find_negative(m_cpu, 4, tz) == 0) {
printf("Please fix filling of data\n");
exit(2);
}
/* reorder cpu -> gpu */
&r1_pd, &m_cpu_md, engine_cpu, &m_gpu_md, engine_gpu, NULL));
CHECK(mkldnn_primitive_create(&r1, r1_pd));
/* relu gpu */
mkldnn_eltwise_relu, &m_gpu_md, 0.0f, 0.0f));
&relu_pd, &relu_d, NULL, engine_gpu, NULL));
CHECK(mkldnn_primitive_create(&relu, relu_pd));
/* reorder gpu -> cpu */
&r2_pd, &m_gpu_md, engine_gpu, &m_cpu_md, engine_cpu, NULL));
CHECK(mkldnn_primitive_create(&r2, r2_pd));
mkldnn_stream_t stream_gpu;
&stream_gpu, engine_gpu, mkldnn_stream_default_flags));
= { { MKLDNN_ARG_FROM, m_cpu }, { MKLDNN_ARG_TO, m_gpu } };
CHECK(mkldnn_primitive_execute(r1, stream_gpu, 2, r1_args));
mkldnn_exec_arg_t relu_args[]
= { { MKLDNN_ARG_SRC, m_gpu }, { MKLDNN_ARG_DST, m_gpu } };
CHECK(mkldnn_primitive_execute(relu, stream_gpu, 2, relu_args));
= { { MKLDNN_ARG_FROM, m_gpu }, { MKLDNN_ARG_TO, m_cpu } };
CHECK(mkldnn_primitive_execute(r2, stream_gpu, 2, r2_args));
CHECK(mkldnn_stream_wait(stream_gpu));
if (find_negative(m_cpu, 4, tz) != 0)
return 2;
/* clean up */
mkldnn_stream_destroy(stream_gpu);
mkldnn_engine_destroy(engine_cpu);
mkldnn_engine_destroy(engine_gpu);
return 0;
}
int main() {
int result = doit();
if (result)
printf("failed\n");
else
printf("passed\n");
return result;
}