Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN)  0.21.0
Performance library for Deep Learning
Classes | Enumerations | Functions
mkldnn Namespace Reference

Classes

struct  batch_normalization_backward
 
struct  batch_normalization_forward
 
struct  concat
 
struct  convolution_backward_data
 
struct  convolution_backward_weights
 
struct  convolution_forward
 
struct  deconvolution_backward_data
 
struct  deconvolution_backward_weights
 
struct  deconvolution_forward
 
struct  eltwise_backward
 
struct  eltwise_forward
 
struct  engine
 An execution engine. More...
 
struct  error
 Intel(R) MKL-DNN exception class. More...
 
class  handle
 A class for wrapping an Intel(R) MKL-DNN handle. It is used as the base class for primitive (mkldnn_primitive_t), engine (mkldnn_engine_t), and stream (mkldnn_stream_t) handles. An object of the mkldnn::handle class can be passed by value. This class enables wrapping: More...
 
class  handle_traits
 A class that provides the destructor for an Intel(R) MKL-DNN C handle. More...
 
struct  inner_product_backward_data
 
struct  inner_product_backward_weights
 
struct  inner_product_forward
 
struct  lrn_backward
 
struct  lrn_forward
 
struct  memory
 Memory primitive that describes the data. More...
 
struct  pooling_backward
 
struct  pooling_forward
 
struct  post_ops
 
class  primitive
 Base class for all computational primitives. More...
 
struct  primitive_attr
 
struct  primitive_desc
 A base class for all primitive descriptors. More...
 
struct  reorder
 
struct  rnn_backward
 
struct  rnn_cell
 
struct  rnn_forward
 
struct  shuffle_backward
 
struct  shuffle_forward
 
struct  softmax_backward
 
struct  softmax_forward
 
struct  stream
 
struct  sum
 
struct  view
 

Enumerations

enum  round_mode { round_nearest = mkldnn_round_nearest, round_down = mkldnn_round_down }
 
enum  padding_kind { zero = mkldnn_padding_zero }
 
enum  prop_kind {
  forward_training = mkldnn_forward_training, forward_scoring = mkldnn_forward_scoring, forward_inference = mkldnn_forward_inference, forward = mkldnn_forward,
  backward = mkldnn_backward, backward_data = mkldnn_backward_data, backward_weights = mkldnn_backward_weights, backward_bias = mkldnn_backward_bias
}
 
enum  algorithm {
  algorithm_undef = mkldnn_alg_kind_undef, convolution_auto = mkldnn_convolution_auto, convolution_direct = mkldnn_convolution_direct, convolution_winograd = mkldnn_convolution_winograd,
  deconvolution_direct = mkldnn_deconvolution_direct, deconvolution_winograd = mkldnn_deconvolution_winograd, eltwise_relu = mkldnn_eltwise_relu, eltwise_tanh = mkldnn_eltwise_tanh,
  eltwise_elu = mkldnn_eltwise_elu, eltwise_square = mkldnn_eltwise_square, eltwise_abs = mkldnn_eltwise_abs, eltwise_sqrt = mkldnn_eltwise_sqrt,
  eltwise_linear = mkldnn_eltwise_linear, eltwise_bounded_relu = mkldnn_eltwise_bounded_relu, eltwise_soft_relu = mkldnn_eltwise_soft_relu, eltwise_logistic = mkldnn_eltwise_logistic,
  eltwise_exp = mkldnn_eltwise_exp, eltwise_gelu = mkldnn_eltwise_gelu, lrn_across_channels = mkldnn_lrn_across_channels, lrn_within_channel = mkldnn_lrn_within_channel,
  pooling_max = mkldnn_pooling_max, pooling_avg = mkldnn_pooling_avg, pooling_avg_include_padding = mkldnn_pooling_avg_include_padding, pooling_avg_exclude_padding = mkldnn_pooling_avg_exclude_padding,
  vanilla_rnn = mkldnn_vanilla_rnn, vanilla_lstm = mkldnn_vanilla_lstm, vanilla_gru = mkldnn_vanilla_gru, gru_linear_before_reset = mkldnn_gru_linear_before_reset
}
 
enum  batch_normalization_flag { use_global_stats = mkldnn_use_global_stats, use_scale_shift = mkldnn_use_scaleshift, fuse_bn_relu = mkldnn_fuse_bn_relu }
 
enum  rnn_direction {
  unidirectional_left2right = mkldnn_unidirectional_left2right, unidirectional_right2left = mkldnn_unidirectional_right2left, unidirectional = mkldnn_unidirectional, bidirectional_concat = mkldnn_bidirectional_concat,
  bidirectional_sum = mkldnn_bidirectional_sum
}
 
enum  query {
  undef = mkldnn_query_undef, eengine = mkldnn_query_engine, primitive_kind = mkldnn_query_primitive_kind, num_of_inputs_s32 = mkldnn_query_num_of_inputs_s32,
  num_of_outputs_s32 = mkldnn_query_num_of_outputs_s32, time_estimate_f64 = mkldnn_query_time_estimate_f64, memory_consumption_s64 = mkldnn_query_memory_consumption_s64, impl_info_str = mkldnn_query_impl_info_str,
  op_d = mkldnn_query_op_d, memory_d = mkldnn_query_memory_d, convolution_d = mkldnn_query_convolution_d, deconvolution_d = mkldnn_query_deconvolution_d,
  shuffle_d = mkldnn_query_shuffle_d, eltwise_d = mkldnn_query_eltwise_d, softmax_d = mkldnn_query_softmax_d, pooling_d = mkldnn_query_pooling_d,
  lrn_d = mkldnn_query_lrn_d, batch_normalization_d = mkldnn_query_batch_normalization_d, inner_product_d = mkldnn_query_inner_product_d, rnn_d = mkldnn_query_rnn_d,
  input_pd = mkldnn_query_input_pd, output_pd = mkldnn_query_output_pd, src_pd = mkldnn_query_src_pd, diff_src_pd = mkldnn_query_diff_src_pd,
  weights_pd = mkldnn_query_weights_pd, diff_weights_pd = mkldnn_query_diff_weights_pd, dst_pd = mkldnn_query_dst_pd, diff_dst_pd = mkldnn_query_diff_dst_pd,
  workspace_pd = mkldnn_query_workspace_pd
}
 

Functions

mkldnn_primitive_kind_t convert_to_c (primitive::kind akind)
 
mkldnn_round_mode_t convert_to_c (round_mode mode)
 
mkldnn_padding_kind_t convert_to_c (padding_kind kind)
 
mkldnn_prop_kind_t convert_to_c (prop_kind kind)
 
mkldnn_alg_kind_t convert_to_c (algorithm aalgorithm)
 
mkldnn_batch_normalization_flag_t convert_to_c (batch_normalization_flag aflag)
 
mkldnn_rnn_direction_t convert_to_c (rnn_direction adir)
 
mkldnn_query_t convert_to_c (query aquery)
 
memory::desc zero_md ()
 
memory null_memory (engine eng)
 
void check_num_parameters (const const_mkldnn_primitive_desc_t &aprimitive_desc, int n_inputs, int n_outputs, const std::string &prim_name)
 
bool is_null_memory (const const_mkldnn_primitive_t &aprimitive)
 
bool operator== (mkldnn_data_type_t a, memory::data_type b)
 
bool operator!= (mkldnn_data_type_t a, memory::data_type b)
 
bool operator== (memory::data_type a, mkldnn_data_type_t b)
 
bool operator!= (memory::data_type a, mkldnn_data_type_t b)
 
bool operator== (mkldnn_memory_format_t a, memory::format b)
 
bool operator!= (mkldnn_memory_format_t a, memory::format b)
 
bool operator== (memory::format a, mkldnn_memory_format_t b)
 
bool operator!= (memory::format a, mkldnn_memory_format_t b)