struct dnnl::primitive_attr

Overview

Primitive attributes. More…

#include <dnnl.hpp>

struct primitive_attr: public dnnl::handle
{
    // construction

    primitive_attr();
    primitive_attr(dnnl_primitive_attr_t attr);

    // methods

    void get_dropout(memory::desc& mask_desc) const;
    void set_dropout(const memory::desc& mask_desc);
    fpmath_mode get_fpmath_mode() const;
    void get_fpmath_mode(fpmath_mode& mode, bool& apply_to_int) const;
    void set_fpmath_mode(fpmath_mode mode, bool apply_to_int = false);
    accumulation_mode get_accumulation_mode() const;
    void set_accumulation_mode(accumulation_mode mode);
    bool get_deterministic() const;
    void set_deterministic(bool value);
    rounding_mode get_rounding_mode(int arg) const;
    void set_rounding_mode(int arg, rounding_mode mode);
    scratchpad_mode get_scratchpad_mode() const;
    void set_scratchpad_mode(scratchpad_mode mode);
    void set_scales_mask(int arg, int mask);

    void set_scales(
        int arg,
        int mask,
        const memory::dims& groups,
        memory::data_type data_type = memory::data_type::f32
        );

    void set_zero_points_mask(int arg, int mask);

    void set_zero_points(
        int arg,
        int mask,
        const memory::dims& groups,
        memory::data_type data_type = memory::data_type::s32
        );

    const post_ops get_post_ops() const;
    void set_post_ops(const post_ops ops);
    void set_rnn_data_qparams(float scale, float shift);
    void get_rnn_data_qparams(float& scale, float& shift);
    void set_rnn_weights_qparams(int mask, const std::vector<float>& scales);
    void get_rnn_weights_qparams(int& mask, std::vector<float>& scales);

    void set_rnn_weights_projection_qparams(
        int mask,
        const std::vector<float>& scales
        );

    void get_rnn_weights_projection_qparams(int& mask, std::vector<float>& scales);
};

Inherited Members

public:
    // methods

    handle<T, traits>& operator = (const handle<T, traits>&);
    handle<T, traits>& operator = (handle<T, traits>&&);
    void reset(T t, bool weak = false);
    T get(bool allow_empty = false) const;
    operator T () const;
    operator bool () const;
    bool operator == (const handle<T, traits>& other) const;
    bool operator != (const handle& other) const;

Detailed Documentation

Primitive attributes.

See also:

Primitive Attributes

Construction

primitive_attr()

Constructs default (empty) primitive attributes.

primitive_attr(dnnl_primitive_attr_t attr)

Creates primitive attributes from a C API dnnl_primitive_attr_t handle.

The resulting handle is not weak and the C handle will be destroyed during the destruction of the C++ object.

Parameters:

attr

The C API primitive attributes.

Methods

void get_dropout(memory::desc& mask_desc) const

Returns the parameters of a dropout attribute.

Parameters:

mask_desc

Output memory descriptor of a dropout mask.

void set_dropout(const memory::desc& mask_desc)

Sets dropout probability.

Parameters:

mask_desc

Output memory descriptor of a dropout mask.

fpmath_mode get_fpmath_mode() const

Returns the fpmath mode.

void get_fpmath_mode(fpmath_mode& mode, bool& apply_to_int) const

Returns the fpmath mode.

Parameters:

mode

Specified fpmath mode.

apply_to_int

Use floating-point arithmetic for integer primitives.

void set_fpmath_mode(fpmath_mode mode, bool apply_to_int = false)

Sets fpmath mode.

Parameters:

mode

Specified fpmath mode.

apply_to_int

Boolean. Use of floating-point arithmetic for integer primitives.

accumulation_mode get_accumulation_mode() const

Returns the accumulation mode.

void set_accumulation_mode(accumulation_mode mode)

Sets accumulation mode.

Parameters:

mode

Specified accumulation mode.

bool get_deterministic() const

Returns the deterministic attribute value.

void set_deterministic(bool value)

Sets deterministic attribute value.

Parameters:

value

Specified deterministic mode.

rounding_mode get_rounding_mode(int arg) const

Returns the rounding mode attribute value.

Parameters:

arg

Argument for which rounding mode query applies.

Returns:

The rounding mode applied to the specified argument.

void set_rounding_mode(int arg, rounding_mode mode)

Sets the rounding mode attribute value for a given argument.

Parameters:

arg

Argument for which to set rounding mode.

mode

Rounding mode to apply.

scratchpad_mode get_scratchpad_mode() const

Returns the scratchpad mode.

void set_scratchpad_mode(scratchpad_mode mode)

Sets scratchpad mode.

Parameters:

mode

Specified scratchpad mode.

void set_scales_mask(int arg, int mask)

Sets scaling factors for primitive operations for a given memory argument.

The scaling factors must be passed at execution time as an argument with index DNNL_ARG_ATTR_SCALES | arg.

Parameters:

arg

Parameter argument index as passed to the primitive::execute() call.

mask

Scaling factors correspondence mask that defines the correspondence between the tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated scaling factor is used for each index along that dimension. Set the mask to 0 to use a common scaling factor for the whole output tensor.

See also:

dnnl_primitive_attr_set_scales_mask

void set_scales(
    int arg,
    int mask,
    const memory::dims& groups,
    memory::data_type data_type = memory::data_type::f32
    )

Sets scaling factors for primitive operations for a given memory argument.

The scaling factors must be passed at execution time as an argument with index DNNL_ARG_ATTR_SCALES | arg.

Parameters:

arg

Parameter argument index as passed to the primitive::execute() call.

mask

Scales correspondence mask that defines the correspondence between the tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated scale is used for each index along that dimension. Set the mask to 0 to use a common scale for the whole output tensor.

groups

Scaling factors correspondence groups that define the correspondence between the tensor dimensions and the scales array. The set i-th dimension indicates a number of groups of scaling factors used for that logical dimension in a memory indicated by arg.

data_type

Scaling factors data_type.

See also:

dnnl_primitive_attr_set_scales

void set_zero_points_mask(int arg, int mask)

Sets zero points for primitive operations for a given memory argument.

The zero points must be passed at execution time as an argument with index DNNL_ARG_ATTR_ZERO_POINTS | arg.

Parameters:

arg

Parameter argument index as passed to the primitive::execute() call.

mask

Zero point correspondence mask that defines the correspondence between the tensor dimensions and the zero_points vector. The set i-th bit indicates that a dedicated zero point is used for each index along that dimension. Set the mask to 0 to use a common zero point for the whole output tensor.

See also:

dnnl_primitive_attr_set_zero_points_mask

void set_zero_points(
    int arg,
    int mask,
    const memory::dims& groups,
    memory::data_type data_type = memory::data_type::s32
    )

Sets zero points for primitive operations for a given memory argument.

The zero points must be passed at execution time as an argument with index DNNL_ARG_ATTR_ZERO_POINTS | arg.

Parameters:

arg

Parameter argument index as passed to the primitive::execute() call.

mask

Zero point correspondence mask that defines the correspondence between the tensor dimensions and the zero_points vector. The set i-th bit indicates that a dedicated zero point is used for each index along that dimension. Set the mask to 0 to use a common zero point for the whole output tensor.

groups

Zero point factors correspondence groups that define the correspondence between the tensor dimensions and the zero_points array. The set i-th dimension indicates a number of groups of zero point factors used for that logical dimension in a memory indicated by arg.

data_type

Zero point factors data_type.

See also:

dnnl_primitive_attr_set_zero_points

const post_ops get_post_ops() const

Returns post-ops previously set via set_post_ops().

Returns:

Post-ops.

void set_post_ops(const post_ops ops)

Sets post-ops.

Note

There is no way to check whether the post-ops would be supported by the target primitive. Any error will be reported by the respective primitive descriptor constructor.

Parameters:

ops

Post-ops object to copy post-ops from.

void set_rnn_data_qparams(float scale, float shift)

Sets quantization scale and shift parameters for RNN data tensors.

For performance reasons, the low-precision configuration of the RNN primitives expect input activations to have the unsigned 8-bit integer data type. The scale and shift parameters are used to quantize floating-point data to unsigned integer and must be passed to the RNN primitive using attributes.

The quantization formula is scale * data + shift.

Example usage:

// RNN parameters
int l = 2, t = 2, mb = 32, sic = 32, slc = 32, dic = 32, dlc = 32;
// Activations quantization parameters
float scale = 63.f, shift = 64.f;

primitive_attr attr;

// Set scale and shift for int8 quantization of activation
attr.set_rnn_data_qparams(scale, shift);

// Create an RNN primitive descriptor.
vanilla_rnn_forward::primitive_desc rnn_d(
        engine, /* arguments */, attr);

Note

Quantization scale and shift are common for src_layer, src_iter, dst_iter, and dst_layer.

Parameters:

scale

The value to scale the data by.

shift

The value to shift the data by.

void get_rnn_data_qparams(float& scale, float& shift)

Returns the quantization scale and shift parameters for RNN data tensors.

Note

Quantization scale and shift are common for src_layer, src_iter, dst_iter, and dst_layer.

Parameters:

scale

The value to scale the data by.

shift

The value to shift the data by.

void set_rnn_weights_qparams(int mask, const std::vector<float>& scales)

Sets quantization scaling factors for RNN weights tensors.

The low-precision configuration of the RNN primitives expect input weights to use the signed 8-bit integer data type. The scaling factors are used to quantize floating-point data to signed integer and must be passed to RNN primitives using attributes.

Note

The dimension order is always native and does not depend on the actual layout used. For example, five-dimensional weights always have (l, d, i, g, o) logical dimension ordering.

Note

Quantization scales are common for weights_layer and weights_iteration

Parameters:

mask

Scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated scaling factor should be used each index along that dimension. Set the mask to 0 to use a common scaling factor for the whole output tensor.

scales

Constant vector of output scaling factors. The following equality must hold: \(scales.size() = \prod\limits_{d \in mask} weights.dims[d].\) Violations can only be detected when the attributes are used to create a primitive descriptor.

void get_rnn_weights_qparams(int& mask, std::vector<float>& scales)

Returns the quantization scaling factors for RNN projection weights tensors.

Note

The dimension order is always native and does not depend on the actual layout used. For example, five-dimensional weights always have (l, d, i, g, o) logical dimension ordering.

Parameters:

mask

Scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated scaling factor should be used each index along that dimension. Set the mask to 0 to use a common scaling factor for the whole output tensor.

scales

Constant vector of output scaling factors. The following equality must hold: \(scales.size() = \prod\limits_{d \in mask} weights.dims[d].\) Violations can only be detected when the attributes are used to create a primitive descriptor.

void set_rnn_weights_projection_qparams(
    int mask,
    const std::vector<float>& scales
    )

Sets quantization scaling factors for RNN projection weights tensors.

passed to RNN primitives using attributes.

Note

The dimension order is always native and does not depend on the actual layout used. For example, five-dimensional weights always have (l, d, i, g, o) logical dimension ordering.

Note

Quantization scales are common for weights_layer and weights_iteration

Parameters:

mask

Scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated scaling factor should be used each index along that dimension. Set the mask to 0 to use a common scaling factor for the whole output tensor.

scales

Constant vector of output scaling factors. The following equality must hold: \(scales.size() = \prod\limits_{d \in mask} weights.dims[d].\) Violations can only be detected when the attributes are used to create a primitive descriptor.

void get_rnn_weights_projection_qparams(int& mask, std::vector<float>& scales)

Returns the quantization scaling factors for RNN projection weights tensors.

Note

The dimension order is always native and does not depend on the actual layout used. For example, five-dimensional weights always have (l, d, i, g, o) logical dimension ordering.

Parameters:

mask

Scaling factors correspondence mask that defines the correspondence between the output tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated scaling factor should be used each index along that dimension. Set the mask to 0 to use a common scaling factor for the whole output tensor.

scales

Constant vector of output scaling factors. The following equality must hold: \(scales.size() = \prod\limits_{d \in mask} weights.dims[d].\) Violations can only be detected when the attributes are used to create a primitive descriptor.