performance_profiling.cpp¶
This example demonstrates the best practices for application performance optimizations with oneDNN. Annotated version: Performance Profiling Example
This example demonstrates the best practices for application performance optimizations with oneDNN. Annotated version: Performance Profiling Example
/******************************************************************************* * Copyright 2019-2024 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include <iostream> #include <stdexcept> #include <vector> #include "oneapi/dnnl/dnnl.hpp" #include "example_utils.hpp" using namespace dnnl; // [Prologue] // Set Strides and Padding const memory::dims strides = {4, 4}; const memory::dims padding = {0, 0}; // [Prologue] // // function to init data void init_data(memory &m, float v) { size_t size = m.get_desc().get_size() / sizeof(float); std::vector<float> data(size, v); write_to_dnnl_memory(data.data(), m); } // function to execute non-fused relu void create_and_execute_relu(memory &data, engine &eng, stream &s) { // relu operates on whatever data format is given to it // create a primitive auto relu_pd = eltwise_forward::primitive_desc(eng, prop_kind::forward_inference, algorithm::eltwise_relu, data.get_desc(), data.get_desc(), 0.f, 0.f); auto relu = eltwise_forward(relu_pd); // execute it (in-place) relu.execute(s, {{DNNL_ARG_SRC, data}, {DNNL_ARG_DST, data}}); } // [Create post_op attr with relu] // function to create post-op attribute for fused relu primitive_attr create_attr_with_relu_post_op() { // create a post-op with relu post_ops ops; ops.append_eltwise(algorithm::eltwise_relu, 0.f, 0.f); // create an attribute and set the corresponding post op primitive_attr attr; attr.set_post_ops(ops); return attr; } // [Create post_op attr with relu] // Implementation for naive convolution on nchw (data) and oihw (weights), // followed by execution of non-fused relu void conv_relu_naive(const memory &user_src, const memory &user_wei, memory user_dst, engine &eng, stream &s) { // [Create mem_desc] // copy the dimensions and format from user's memory auto conv_src_md = memory::desc(user_src.get_desc()); auto conv_wei_md = memory::desc(user_wei.get_desc()); auto conv_dst_md = memory::desc(user_dst.get_desc()); // [Create mem_desc] // [Create conv_prim_desc] // create a convolution primitive descriptor auto conv_pd = convolution_forward::primitive_desc(eng, prop_kind::forward_inference, algorithm::convolution_direct, conv_src_md, conv_wei_md, conv_dst_md, strides, padding, padding); // [Create conv_prim_desc] // [Create conv_primitive] // create convolution primitive auto conv = convolution_forward(conv_pd); // [Create conv_primitive] // [Add to stream] // execute convolution by adding it to the stream s conv.execute(s, {{DNNL_ARG_SRC, user_src}, {DNNL_ARG_WEIGHTS, user_wei}, {DNNL_ARG_DST, user_dst}}); // [Add to stream] // [Create and execute relu] // execute relu (on convolution's destination format, whatever it is) create_and_execute_relu(user_dst, eng, s); s.wait(); // [Create and execute relu] } // Implementation for convolution on blocked format for data and // weights, followed by execution of non-fused relu void conv_relu_blocked(memory user_src, memory user_wei, memory user_dst, engine &eng, stream &s) { // [Create mem_desc with tag=any] // copy the dimensions and data type from user's memory and set format tag // to "any" to allow convolution to pick the best implementation auto conv_src_md = memory::desc(user_src.get_desc().get_dims(), user_src.get_desc().get_data_type(), memory::format_tag::any); auto conv_wei_md = memory::desc(user_wei.get_desc().get_dims(), user_wei.get_desc().get_data_type(), memory::format_tag::any); auto conv_dst_md = memory::desc(user_dst.get_desc().get_dims(), user_dst.get_desc().get_data_type(), memory::format_tag::any); // [Create mem_desc with tag=any] // [Create conv_prim_desc implementation2] // create a convolution primitive descriptor and primitive auto conv_pd = convolution_forward::primitive_desc(eng, prop_kind::forward_inference, algorithm::convolution_direct, conv_src_md, conv_wei_md, conv_dst_md, strides, padding, padding); // [Create conv_prim_desc implementation2] // [Conditionally create and execute reorder prims] // prepare convolution source memory conv_src = user_src; if (conv_pd.src_desc() != user_src.get_desc()) { conv_src = memory(conv_pd.src_desc(), eng); auto r_pd = reorder::primitive_desc(user_src, conv_src); reorder(r_pd).execute(s, user_src, conv_src); } // prepare convolution weights memory conv_wei = user_wei; if (conv_pd.weights_desc() != user_wei.get_desc()) { conv_wei = memory(conv_pd.weights_desc(), eng); auto r_pd = reorder::primitive_desc(user_wei, conv_wei); reorder(r_pd).execute(s, user_wei, conv_wei); } // prepare convolution destination memory conv_dst = user_dst; if (conv_pd.dst_desc() != user_dst.get_desc()) conv_dst = memory(conv_pd.dst_desc(), eng); // [Conditionally create and execute reorder prims] // [Create conv_primitive implementation2] // create convolution primitive auto conv = convolution_forward(conv_pd); // [Create conv_primitive implementation2] // [Add to stream implementation2] // execute convolution by adding it to the stream s conv.execute(s, {{DNNL_ARG_SRC, conv_src}, {DNNL_ARG_WEIGHTS, conv_wei}, {DNNL_ARG_DST, conv_dst}}); // [Add to stream implementation2] // [Create and execute relu implementation2] // execute relu (on convolution's destination format, whatever it is) create_and_execute_relu(conv_dst, eng, s); // [Create and execute relu implementation2] if (conv_pd.dst_desc() != user_dst.get_desc()) { auto r_pd = reorder::primitive_desc(conv_dst, user_dst); reorder(r_pd).execute(s, conv_dst, user_dst); } s.wait(); // reorder data to the user's format if needed. } // Implementation for convolution on blocked format for data and // weights and the relu operation fused via a post-op attribute added to the // convolution prim_descriptor void conv_relu_fused(memory user_src, memory user_wei, memory user_dst, const engine &eng, stream &s) { // copy the dimensions data type from user's memory and set format tag // to any to allow convolution to pick the best implementation auto conv_src_md = memory::desc(user_src.get_desc().get_dims(), user_src.get_desc().get_data_type(), memory::format_tag::any); auto conv_wei_md = memory::desc(user_wei.get_desc().get_dims(), user_wei.get_desc().get_data_type(), memory::format_tag::any); auto conv_dst_md = memory::desc(user_dst.get_desc().get_dims(), user_dst.get_desc().get_data_type(), memory::format_tag::any); // Next the convolution prim descriptor is created, which inherits the ReLU // [Create prim_desc with attr] // create an attribute for fused relu auto attr = create_attr_with_relu_post_op(); // create a convolution primitive descriptor auto conv_pd = convolution_forward::primitive_desc(eng, prop_kind::forward_inference, algorithm::convolution_direct, conv_src_md, conv_wei_md, conv_dst_md, strides, padding, padding, attr); // [Create prim_desc with attr] // prepare convolution source memory conv_src = user_src; if (conv_pd.src_desc() != user_src.get_desc()) { conv_src = memory(conv_pd.src_desc(), eng); auto r_pd = reorder::primitive_desc(user_src, conv_src); reorder(r_pd).execute(s, user_src, conv_src); } // prepare convolution weights memory conv_wei = user_wei; if (conv_pd.weights_desc() != user_wei.get_desc()) { conv_wei = memory(conv_pd.weights_desc(), eng); auto r_pd = reorder::primitive_desc(user_wei, conv_wei); reorder(r_pd).execute(s, user_wei, conv_wei); } // prepare convolution destination memory conv_dst = user_dst; if (conv_pd.dst_desc() != user_dst.get_desc()) conv_dst = memory(conv_pd.dst_desc(), eng); // [Create conv_primitive implementation3] // create convolution primitive auto conv = convolution_forward(conv_pd); // [Create conv_primitive implementation3] // [Add to stream implementation3] // execute convolution by adding it to the stream s conv.execute(s, {{DNNL_ARG_SRC, conv_src}, {DNNL_ARG_WEIGHTS, conv_wei}, {DNNL_ARG_DST, conv_dst}}); // [Add to stream implementation3] // reorder data to user's format if needed if (conv_pd.dst_desc() != user_dst.get_desc()) { auto r_pd = reorder::primitive_desc(conv_dst, user_dst); reorder(r_pd).execute(s, conv_dst, user_dst); } s.wait(); } void performance_profiling(engine::kind engine_kind, int argc, char **argv) { // Initialize engine engine eng(engine_kind, 0); // Initialize stream stream s(eng); // [Set dimensions] // set dimensions for synthetic data and weights const memory::dim BATCH = 128; const memory::dim IC = 3, OC = 96; const memory::dim IH = 227, KH = 11, OH = 55; const memory::dim IW = 227, KW = 11, OW = 55; // [Set dimensions] // [Create memory objects] // create oneDNN memory objects for user's tensors (in nchw and oihw formats) auto user_src = memory({{BATCH, IC, IH, IW}, memory::data_type::f32, memory::format_tag::nchw}, eng); auto user_wei = memory({{OC, IC, KH, KW}, memory::data_type::f32, memory::format_tag::oihw}, eng); auto user_dst = memory({{BATCH, OC, OH, OW}, memory::data_type::f32, memory::format_tag::nchw}, eng); // [Create memory objects] // fill source, destination, and weights with synthetic data init_data(user_src, 1); init_data(user_dst, -1); init_data(user_wei, .5); // set implementation ("naive"||"blocked"||"fused") setting implementation // to "validation" will run all implementations std::string implementation; if (argc <= 2) implementation = "validation"; else if (argc == 3) implementation = argv[2]; if (!(implementation == "validation" || implementation == "naive" || implementation == "blocked" || implementation == "fused")) { std::cout << "The implementation can be one of:\n"; std::cout << " - naive: NCHW format without fusion\n"; std::cout << " - blocked: format propagation without fusion\n"; std::cout << " - fused: format propagation with fusion\n"; std::cout << " - validation: runs all implementations\n\n"; std::cout << "Validation will run if no parameters are specified.\n\n"; throw std::invalid_argument("Incorrect input arguments."); } if (implementation == "naive" || implementation == "validation") { std::cout << "Implementation: naive.\n"; // run conv + relu w/o fusing conv_relu_naive(user_src, user_wei, user_dst, eng, s); std::cout << "Conv + ReLU w/ nchw format completed.\n"; } if (implementation == "blocked" || implementation == "validation") { std::cout << "Implementation: blocked.\n"; // run conv + relu w/o fusing conv_relu_blocked(user_src, user_wei, user_dst, eng, s); std::cout << "Conv + ReLU w/ blocked format completed.\n"; } if (implementation == "fused" || implementation == "validation") { std::cout << "Implementation: fused.\n"; // run conv + relu w/ fusing conv_relu_fused(user_src, user_wei, user_dst, eng, s); std::cout << "Conv + ReLU w/ fusing completed.\n"; } } int main(int argc, char **argv) { engine::kind engine_kind = parse_engine_kind(argc, argv, 1); return handle_example_errors( performance_profiling, engine_kind, argc, argv); }