.. index:: pair: example; binary.cpp .. _doxid-binary_8cpp-example: binary.cpp ========== Annotated version: :ref:`Binary Primitive Example ` Annotated version: :ref:`Binary Primitive Example ` .. ref-code-block:: cpp /******************************************************************************* * Copyright 2020-2022 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include #include #include #include #include #include "example_utils.hpp" #include "oneapi/dnnl/dnnl.hpp" using namespace :ref:`dnnl `; using :ref:`tag ` = :ref:`memory::format_tag `; using :ref:`dt ` = :ref:`memory::data_type `; void binary_example(:ref:`dnnl::engine::kind ` engine_kind) { // Create execution dnnl::engine. :ref:`dnnl::engine ` :ref:`engine `(engine_kind, 0); // Create dnnl::stream. :ref:`dnnl::stream ` engine_stream(:ref:`engine `); // Tensor dimensions. const :ref:`memory::dim ` N = 3, // batch size IC = 3, // channels IH = 150, // tensor height IW = 150; // tensor width // Source (src_0 and src_1) and destination (dst) tensors dimensions. :ref:`memory::dims ` src_0_dims = {N, IC, IH, IW}; :ref:`memory::dims ` src_1_dims = {N, IC, IH, 1}; // Allocate buffers. std::vector src_0_data(product(src_0_dims)); std::vector src_1_data(product(src_1_dims)); // Initialize src_0 and src_1 (src). std::generate(src_0_data.begin(), src_0_data.end(), []() { static int i = 0; return std::cos(i++ / 10.f); }); std::generate(src_1_data.begin(), src_1_data.end(), []() { static int i = 0; return std::sin(i++ * 2.f); }); // Create src and dst memory descriptors. auto src_0_md = :ref:`memory::desc `(src_0_dims, :ref:`dt::f32 `, tag::nchw); auto src_1_md = :ref:`memory::desc `(src_1_dims, :ref:`dt::f32 `, tag::nchw); auto :ref:`dst_md ` = :ref:`memory::desc `(src_0_dims, :ref:`dt::f32 `, tag::nchw); // Create src memory objects. auto src_0_mem = :ref:`memory `(src_0_md, :ref:`engine `); auto src_1_mem = :ref:`memory `(src_1_md, :ref:`engine `); // Write data to memory object's handle. write_to_dnnl_memory(src_0_data.data(), src_0_mem); write_to_dnnl_memory(src_1_data.data(), src_1_mem); // Create primitive post-ops (ReLU). const float alpha = 0.f; const float beta = 0.f; :ref:`post_ops ` binary_ops; binary_ops.:ref:`append_eltwise `(:ref:`algorithm::eltwise_relu `, alpha, beta); :ref:`primitive_attr ` binary_attr; binary_attr.:ref:`set_post_ops `(binary_ops); // Create primitive descriptor. auto binary_pd = :ref:`binary::primitive_desc `(:ref:`engine `, :ref:`algorithm::binary_mul `, src_0_md, src_1_md, dst_md, binary_attr); // Create the primitive. auto binary_prim = :ref:`binary `(binary_pd); // Primitive arguments. Set up in-place execution by assigning src_0 as DST. std::unordered_map binary_args; binary_args.insert({:ref:`DNNL_ARG_SRC_0 `, src_0_mem}); binary_args.insert({:ref:`DNNL_ARG_SRC_1 `, src_1_mem}); binary_args.insert({:ref:`DNNL_ARG_DST `, src_0_mem}); // Primitive execution: binary with ReLU. binary_prim.execute(engine_stream, binary_args); // Wait for the computation to finalize. engine_stream.wait(); // Read data from memory object's handle. read_from_dnnl_memory(src_0_data.data(), src_0_mem); } int main(int argc, char **argv) { return handle_example_errors(binary_example, parse_engine_kind(argc, argv)); }