/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif
#include "oneapi/dal/algo/knn.hpp"
#include "oneapi/dal/io/csv.hpp"
#include "oneapi/dal/exceptions.hpp"
#include "example_util/utils.hpp"
namespace dal = oneapi::dal;
void run(sycl::queue& q) {
const auto train_data_file_name = get_data_path("knn_regression_train_data.csv");
const auto train_response_file_name = get_data_path("knn_regression_train_responses.csv");
const auto test_data_file_name = get_data_path("knn_regression_test_data.csv");
const auto test_response_file_name = get_data_path("knn_regression_test_responses.csv");
const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
const auto y_train =
dal::read<dal::table>(q, dal::csv::data_source{ train_response_file_name });
using float_t = float;
using method_t = dal::knn::method::by_default;
using task_t = dal::knn::task::regression;
using descriptor_t = dal::knn::descriptor<float_t, method_t, task_t>;
const auto knn_desc_uniform = descriptor_t(5);
const auto knn_desc_distance = descriptor_t(5).set_voting_mode(dal::knn::voting_mode::distance);
const auto x_test = dal::read<dal::table>(q, dal::csv::data_source{ test_data_file_name });
const auto y_test = dal::read<dal::table>(q, dal::csv::data_source{ test_response_file_name });
const auto train_result_uniform = dal::train(q, knn_desc_uniform, x_train, y_train);
const auto train_result_distance = dal::train(q, knn_desc_distance, x_train, y_train);
const auto test_result_uniform =
dal::infer(q, knn_desc_uniform, x_test, train_result_uniform.get_model());
const auto test_result_distance =
dal::infer(q, knn_desc_distance, x_test, train_result_distance.get_model());
std::cout << "Test results (uniform regression):\n"
<< test_result_uniform.get_responses() << std::endl;
std::cout << "Test results (distance regression):\n"
<< test_result_distance.get_responses() << std::endl;
std::cout << "True responses:\n" << y_test << std::endl;
}
int main(int argc, char const* argv[]) {
for (auto d : list_devices()) {
std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
<< ", " << d.get_info<sycl::info::device::name>() << "\n"
<< std::endl;
auto q = sycl::queue{ d };
// TODO: Should be deleted after regression algorithm introduction on CPU
try {
run(q);
}
catch (const dal::unimplemented& e) {
std::cout << e.what() << std::endl;
}
}
return 0;
}