Radial Basis Function (RBF) kernel¶
The Radial Basis Function (RBF) kernel is a popular kernel function used in kernelized learning algorithms.
Operation |
Computational methods |
Programming Interface |
||
Mathematical formulation¶
Refer to Developer Guide: Radial Basis Function (RBF) kernel.
Programming Interface¶
All types and functions in this section are declared in the
oneapi::dal::rbf_kernel
namespace and are available via inclusion of the
oneapi/dal/algo/rbf_kernel.hpp
header file.
Descriptor¶
-
template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor¶ - Template Parameters
Constructors
-
descriptor() = default¶
Creates a new instance of the class with the default property values.
Properties
-
double sigma¶
The coefficient \(\sigma\) of the RBF kernel. Default value: 1.0.
- Getter & Setter
double get_sigma() const
auto & set_sigma(double value)
Training compute(...)¶
Input¶
-
template<typename Task = task::by_default>
class compute_input¶ - Template Parameters
Task – Tag-type that specifies the type of the problem to solve. Can be task::compute.
Constructors
-
compute_input(const table &x, const table &y)¶
Creates a new instance of the class with the given
x
andy
.
Properties
Result¶
-
template<typename Task = task::by_default>
class compute_result¶ - Template Parameters
Task – Tag-type that specifies the type of the problem to solve. Can be task::compute.
Constructors
-
compute_result()¶
Creates a new instance of the class with the default property values.
Properties
Operation¶
-
template<typename Descriptor>
rbf_kernel::compute_result compute(const Descriptor &desc, const rbf_kernel::compute_input &input)¶ - Parameters
desc – RBF Kernel algorithm descriptor rbf_kernel::descriptor.
input – Input data for the computing operation
- Preconditions
- input.data.is_empty == false