Decision Forest Classification and Regression (DF)¶
Decision Forest (DF) classification and regression algorithms are based on an ensemble of tree-structured classifiers, which are known as decision trees. Decision forest is built using the general technique of bagging, a bootstrap aggregation, and a random choice of features. For more details, see [Breiman84] and [Breiman2001].
Operation |
Computational methods |
Programming Interface |
|||
Mathematical formulation¶
Refer to Developer Guide: Decision Forest Classification and Regression.
Programming Interface¶
All types and functions in this section are declared in the
oneapi::dal::decision_forest
namespace and are available via inclusion of the
oneapi/dal/algo/decision_forest.hpp
header file.
Enum classes¶
error_metric_mode¶
- error_metric_mode::none
Do not compute error metric.
- error_metric_mode::out_of_bag_error
Train produces \(1 \times 1\) table with cumulative prediction error for out of bag observations.
- error_metric_mode::out_of_bag_error_per_observation
Train produces \(n \times 1\) table with prediction error for out-of-bag observations.
variable_importance_mode¶
- variable_importance_mode::none
Do not compute variable importance.
- variable_importance_mode::mdi
Mean Decrease Impurity. Computed as the sum of weighted impurity decreases for all nodes where the variable is used, averaged over all trees in the forest.
- variable_importance_mode::mda_raw
Mean Decrease Accuracy (permutation importance). For each tree, the prediction error on the out-of-bag portion of the data is computed (error rate for classification, MSE for regression). The same is done after permuting each predictor variable. The difference between the two are then averaged over all trees.
- variable_importance_mode::mda_scaled
Mean Decrease Accuracy (permutation importance). This is MDA_Raw value scaled by its standard deviation.
infer_mode¶
- infer_mode::class_labels
Infer produces a “math:n times 1 table with the predicted labels.
- infer_mode::class_responses
deprecated
- infer_mode::class_probabilities
Infer produces \(n \times c\) table with the predicted class probabilities for each observation.
voting_mode¶
- voting_mode::weighted
The final prediction is combined through a weighted majority voting.
- voting_mode::unweighted
The final prediction is combined through a simple majority voting.
splitter_mode¶
- splitter_mode::best
The best splitting strategy chooses the best threshold for each feature while building trees in terms of impurity among all histogram bins and feature subsets.
- splitter_mode::random
The random splitting strategy chooses a random threshold for each feature while building trees and selects the best feature in terms of impurity computed for that random split from the feature subsets.
Descriptor¶
-
template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor¶ - Template Parameters
Float – The floating-point type that the algorithm uses for intermediate computations. Can be float or double.
Method – Tag-type that specifies an implementation of algorithm. Can be method::dense or method::hist.
Task – Tag-type that specifies type of the problem to solve. Can be task::classification or task::regression.
Constructors
-
descriptor() = default¶
Creates a new instance of the class with the default property values.
Properties
-
std::int64_t max_leaf_nodes¶
The maximal number of the leaf nodes. If 0, the number of leaf nodes is not limited. Default value: 0.
- Getter & Setter
std::int64_t get_max_leaf_nodes() const
auto & set_max_leaf_nodes(std::int64_t value)
-
std::int64_t max_bins¶
The maximal number of discrete bins to bucket continuous features. Used with method::hist split-finding method only. Increasing the number results in higher computation costs. Default value: 256.
- Getter & Setter
std::int64_t get_max_bins() const
auto & set_max_bins(std::int64_t value)
- Invariants
- max_bins > 1
-
std::int64_t class_count¶
The class count. Used with task::classification only. Default value: 2.
- Getter & Setter
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> std::int64_t get_class_count() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_class_count(std::int64_t value)
-
double observations_per_tree_fraction¶
The fraction of observations per tree. Default value: 1.0.
- Getter & Setter
double get_observations_per_tree_fraction() const
auto & set_observations_per_tree_fraction(double value)
- Invariants
-
variable_importance_mode variable_importance_mode¶
The variable importance mode. Default value: variable_importance_mode::none.
- Getter & Setter
variable_importance_mode get_variable_importance_mode() const
auto & set_variable_importance_mode(variable_importance_mode value)
-
std::int64_t tree_count¶
The number of trees in the forest. Default value: 100.
- Getter & Setter
std::int64_t get_tree_count() const
auto & set_tree_count(std::int64_t value)
- Invariants
- tree_count > 0
-
std::int64_t min_observations_in_split_node¶
The minimal number of observations in a split node. Default value: 2.
- Getter & Setter
std::int64_t get_min_observations_in_split_node() const
auto & set_min_observations_in_split_node(std::int64_t value)
- Invariants
-
std::int64_t features_per_node¶
The number of features to consider when looking for the best split for a node. Default value: task::classification ? sqrt(p) : p/3, where p is the total number of features.
- Getter & Setter
std::int64_t get_features_per_node() const
auto & set_features_per_node(std::int64_t value)
-
double min_weight_fraction_in_leaf_node¶
The min weight fraction in a leaf node. The minimum weighted fraction of the total sum of weights (of all input observations) required to be at a leaf node. Default value: 0.0.
- Getter & Setter
double get_min_weight_fraction_in_leaf_node() const
auto & set_min_weight_fraction_in_leaf_node(double value)
- Invariants
-
std::int64_t max_tree_depth¶
The maximal depth of the tree. If 0, then nodes are expanded until all leaves are pure or until all leaves contain less or equal to min observations in leaf node samples. Default value: 0.
- Getter & Setter
std::int64_t get_max_tree_depth() const
auto & set_max_tree_depth(std::int64_t value)
-
bool memory_saving_mode¶
The memory saving mode. Default value: false.
- Getter & Setter
bool get_memory_saving_mode() const
auto & set_memory_saving_mode(bool value)
-
infer_mode infer_mode¶
The infer mode. Used with task::classification only.
- Getter & Setter
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> infer_mode get_infer_mode() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_infer_mode(infer_mode value)
-
voting_mode voting_mode¶
The voting mode. Used with task::classification only.
- Getter & Setter
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> voting_mode get_voting_mode() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_voting_mode(voting_mode value)
-
splitter_mode splitter_mode¶
Splitter strategy: if ‘best’, best threshold for each is selected. If ‘random’, threshold is selected randomly. Default value: splitter_mode::best.
- Getter & Setter
splitter_mode get_splitter_mode() const
auto & set_splitter_mode(splitter_mode value)
-
std::int64_t min_observations_in_leaf_node¶
The minimal number of observations in a leaf node. Default value: 1 for classification, 5 for regression.
- Getter & Setter
std::int64_t get_min_observations_in_leaf_node() const
auto & set_min_observations_in_leaf_node(std::int64_t value)
- Invariants
-
error_metric_mode error_metric_mode¶
The error metric mode. Default value: error_metric_mode::none.
- Getter & Setter
error_metric_mode get_error_metric_mode() const
auto & set_error_metric_mode(error_metric_mode value)
-
bool bootstrap¶
The bootstrap mode, if true, the training set for a tree is a bootstrap of the whole training set, if False, the whole dataset is used to build each tree. Default value: true.
- Getter & Setter
bool get_bootstrap() const
auto & set_bootstrap(bool value)
-
double min_impurity_decrease_in_split_node¶
The min impurity decrease in a split node is a threshold for stopping the tree growth early. A node will be split if its impurity is above the threshold, otherwise it is a leaf. Default value: 0.0.
- Getter & Setter
double get_min_impurity_decrease_in_split_node() const
auto & set_min_impurity_decrease_in_split_node(double value)
- Invariants
-
double impurity_threshold¶
The impurity threshold, a node will be split if this split induces a decrease of the impurity greater than or equal to the input value. Default value: 0.0.
- Getter & Setter
double get_impurity_threshold() const
auto & set_impurity_threshold(double value)
- Invariants
- impurity_threshold >= 0.0
-
std::int64_t seed¶
Seed for the random numbers generator used by the algorithm.
- Getter & Setter
std::int64_t get_seed() const
auto & set_seed(std::int64_t value)
- Invariants
- tree_count > 0
-
std::int64_t min_bin_size¶
The minimal number of observations in a bin. Used with method::hist split-finding method only. Default value: 5.
- Getter & Setter
std::int64_t get_min_bin_size() const
auto & set_min_bin_size(std::int64_t value)
- Invariants
- min_bin_size > 0
Model¶
-
template<typename Task = task::by_default>
class model¶ - Template Parameters
Task – Tag-type that specifies the type of the problem to solve. Can be task::classification or task::regression.
Constructors
-
model()¶
Creates a new instance of the class with the default property values.
Public Methods
-
std::int64_t get_tree_count() const¶
The number of trees in the forest.
-
template<typename T = Task, typename None = detail::enable_if_classification_t<T>>
std::int64_t get_class_count() const¶ The class count. Used with oneapi::dal::decision_forest::task::classification only.
-
template<typename Visitor>
void traverse_depth_first(std::int64_t tree_idx, Visitor &&visitor) const¶ Performs Depth First Traversal of i-th tree.
- Parameters
tree_idx – Index of the tree to traverse.
visitor – This functor gets notified when tree nodes are visited, via corresponding operators: bool operator()(const decision_forest::split_node_info<Task>&) bool operator()(const decision_forest::leaf_node_info<Task>&).
-
template<typename T, typename Visitor>
void traverse_depth_first(T &&visitor_array) const¶ Performs Depth First Traversal for all trees.
- Parameters
visitor_array – This an array of functors which are notified when tree nodes are visited, via corresponding operators: bool operator()(const decision_forest::split_node_info<Task>&) bool operator()(const decision_forest::leaf_node_info<Task>&).
-
template<typename Visitor>
void traverse_breadth_first(std::int64_t tree_idx, Visitor &&visitor) const¶ Performs Breadth First Traversal of i-th tree.
- Parameters
tree_idx – Index of the tree to traverse.
visitor – This functor gets notified when tree nodes are visited, via corresponding operators: bool operator()(const decision_forest::split_node_info<Task>&) bool operator()(const decision_forest::leaf_node_info<Task>&).
-
template<typename T, typename Visitor>
void traverse_breadth_first(T &&visitor_array) const¶ Performs Breadth First Traversal for all trees.
- Parameters
visitor_array – This an array of functors which are notified when tree nodes are visited, via corresponding operators: bool operator()(const decision_forest::split_node_info<Task>&) bool operator()(const decision_forest::leaf_node_info<Task>&).
Training train(...)¶
Input¶
-
template<typename Task = task::by_default>
class train_input¶ - Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::classification or task::regression.
Constructors
-
train_input(const table &data, const table &responses, const table &weights = table{})¶
Creates a new instance of the class with the given
data
,responses
andweights
property values.
Properties
-
const table &labels¶
Vector of labels \(y\) for the training set \(X\). Default value: table{}.
- Getter & Setter
const table & get_labels() const
auto & set_labels(const table &value)
-
const table &weights¶
The vector of weights \(w\) for the training set \(X\). Default value: table{}.
- Getter & Setter
const table & get_weights() const
auto & set_weights(const table &value)
Result¶
-
template<typename Task = task::by_default>
class train_result¶ - Template Parameters
Task – Tag-type that specifies type of the problem to solve. Can be task::classification or task::regression.
Constructors
-
train_result()¶
Creates a new instance of the class with the default property values.
Properties
-
const table &oob_err_accuracy¶
A \(1 \times 1\) table containing cumulative out-of-bag error (accuracy) value. Computed when
error_metric_mode
set witherror_metric_mode::out_of_bag_error_accuracy
. Default value: table{}.- Getter & Setter
const table & get_oob_err_accuracy() const
auto & set_oob_err_accuracy(const table &value)
-
const table &oob_err_per_observation¶
A \(n \times 1\) table containing out-of-bag error value per observation. Computed when
error_metric_mode
set witherror_metric_mode::out_of_bag_error_per_observation
. Default value: table{}.- Getter & Setter
const table & get_oob_err_per_observation() const
auto & set_oob_err_per_observation(const table &value)
-
const table &oob_err_r2¶
A \(1 \times 1\) table containing cumulative out-of-bag error (R2) value. Computed when
error_metric_mode
set witherror_metric_mode::out_of_bag_error_r2
. Default value: table{}.- Getter & Setter
const table & get_oob_err_r2() const
auto & set_oob_err_r2(const table &value)
-
const table &oob_err_decision_function¶
A \(n \times c\) table containing decision function value per observation. Computed when
error_metric_mode
set witherror_metric_mode::out_of_bag_error_decision_function
. Default value: table{}.- Getter & Setter
const table & get_oob_err_decision_function() const
auto & set_oob_err_decision_function(const table &value)
-
const model<Task> &model¶
The trained Decision Forest model. Default value: model<Task>{}.
- Getter & Setter
const model< Task > & get_model() const
auto & set_model(const model< Task > &value)
-
const table &oob_err¶
A \(1 \times 1\) table containing cumulative out-of-bag error value. Computed when
error_metric_mode
set witherror_metric_mode::out_of_bag_error
. Default value: table{}.- Getter & Setter
const table & get_oob_err() const
auto & set_oob_err(const table &value)
-
const table &oob_err_prediction¶
A \(n \times 1\) table containing prediction value per observation. Computed when
error_metric_mode
set witherror_metric_mode::out_of_bag_error_prediction
. Default value: table{}.- Getter & Setter
const table & get_oob_err_prediction() const
auto & set_oob_err_prediction(const table &value)
-
const table &var_importance¶
A \(1 \times p\) table containing variable importance value for each feature. Computed when variable_importance_mode != variable_importance_mode::none. Default value: table{}.
- Getter & Setter
const table & get_var_importance() const
auto & set_var_importance(const table &value)
Operation¶
-
template<typename Descriptor>
decision_forest::train_result train(const Descriptor &desc, const decision_forest::train_input &input)¶ - Parameters
desc – Decision Forest algorithm descriptor decision_forest::descriptor.
input – Input data for the training operation
Inference infer(...)¶
Input¶
-
template<typename Task = task::by_default>
class infer_input¶ - Template Parameters
Task – Tag-type that specifies the type of the problem to solve. Can be task::classification or task::regression.
Constructors
-
infer_input(const model<Task> &trained_model, const table &data)¶
Creates a new instance of the class with the given
model
anddata
property values.
Properties
Result¶
-
template<typename Task = task::by_default>
class infer_result¶ - Template Parameters
Task – Tag-type that specifies the type of the problem to solve. Can be task::classification or task::regression.
Constructors
-
infer_result()¶
Creates a new instance of the class with the default property values.
Properties
-
const table &labels¶
The \(n \times 1\) table with the predicted labels. Default value: table{}.
- Getter & Setter
const table & get_labels() const
auto & set_labels(const table &value)
-
const table &responses¶
The \(n \times 1\) table with the predicted responses. Default value: table{}.
- Getter & Setter
const table & get_responses() const
auto & set_responses(const table &value)
-
const table &probabilities¶
A \(n \times c\) table with the predicted class probabilities for each observation.
- Getter & Setter
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> const table & get_probabilities() const
template <typename T = Task, typename None = detail::enable_if_classification_t<T>> auto & set_probabilities(const table &value)
Operation¶
-
template<typename Descriptor>
decision_forest::infer_result infer(const Descriptor &desc, const decision_forest::infer_input &input)¶ - Parameters
desc – Decision Forest algorithm descriptor decision_forest::descriptor.
input – Input data for the inference operation
- Preconditions
- input.data.is_empty == false